检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林卫星[1] 陈炎海[1] 欧超[1] 李文磊[1]
机构地区:[1]宁波大学信息科学与工程学院,浙江宁波315211
出 处:《数学的实践与认识》2012年第4期107-118,共12页Mathematics in Practice and Theory
基 金:浙江省教育厅重点项目(Z201017236);浙江省潜江人才项目(2011R10074)
摘 要:在进行粒子群优化的收敛性理论分析的基础上,推出了保证粒子群优化算法收敛性的参数设置区域,合理选择粒子群算法的关键参数,将粒子群优化与广义预测控制有机融合,用粒子群算法来解决广义预测控制的优化问题,提出基于粒子群优化的广义预测控制算法,通过工业过程对象的仿真并和传统的广义预测控制算法进行了对比分析,表明了该算法的有效性,特别是算法具有良好的输出跟踪精度和较强的鲁棒性.Generalized predictive control(GPC) is an algorithm of advanced control developed by self-tuning control.It is presented that a novel algorithm of generalized predictive control based on partical swarm optimization(PSO) in this paper.The convergence of PSO is analyzed to set its parameters.An area of parameter is got for convergence of PSO.PSO is used to optimize the performance of GPC.The simulation of industrial process and results show that this method can get good performance and robustness.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.4