粒子群优化的收敛分析及在广义预测控制中的应用  

Generalized Predictive Control and Application Based on Convergence of Particle Swarm Optimization

在线阅读下载全文

作  者:林卫星[1] 陈炎海[1] 欧超[1] 李文磊[1] 

机构地区:[1]宁波大学信息科学与工程学院,浙江宁波315211

出  处:《数学的实践与认识》2012年第4期107-118,共12页Mathematics in Practice and Theory

基  金:浙江省教育厅重点项目(Z201017236);浙江省潜江人才项目(2011R10074)

摘  要:在进行粒子群优化的收敛性理论分析的基础上,推出了保证粒子群优化算法收敛性的参数设置区域,合理选择粒子群算法的关键参数,将粒子群优化与广义预测控制有机融合,用粒子群算法来解决广义预测控制的优化问题,提出基于粒子群优化的广义预测控制算法,通过工业过程对象的仿真并和传统的广义预测控制算法进行了对比分析,表明了该算法的有效性,特别是算法具有良好的输出跟踪精度和较强的鲁棒性.Generalized predictive control(GPC) is an algorithm of advanced control developed by self-tuning control.It is presented that a novel algorithm of generalized predictive control based on partical swarm optimization(PSO) in this paper.The convergence of PSO is analyzed to set its parameters.An area of parameter is got for convergence of PSO.PSO is used to optimize the performance of GPC.The simulation of industrial process and results show that this method can get good performance and robustness.

关 键 词:广义预测控制 粒子群优化 收敛性 鲁棒性 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象