检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张胜刚[1] 宋明威[2] 王仁宏[2] 李国荣[1] 唐晓[1] 刘启贵[1]
机构地区:[1]大连医科大学卫生统计教研室,辽宁大连116023 [2]大连理工大学数学科学学院,辽宁大连116024
出 处:《辽宁师范大学学报(自然科学版)》2012年第1期19-24,共6页Journal of Liaoning Normal University:Natural Science Edition
摘 要:1975年王仁宏建立了任意剖分下多元样条函数的基本理论框架,即所谓光滑余因子方法.多元样条在函数逼近、计算机辅助几何设计、有限元及小波等领域中均有重要的应用.由于某些特殊剖分如均匀剖分的可研究性,1984年王仁宏给出均匀二型剖分下的二元三次一阶光滑样条空间S13(Δm(2n))的维数及其B样条基函数,在计算机辅助几何设计,微分方程数值解等方面应用广泛.在研究光滑余因子方法的基础上,分析均匀二型剖分下的二元五次三阶光滑样条空间S35(Δm(2n))函数空间,给出了S35(Δm(2n))的维数及其B样条基函数,满足曲面拟合和微分方程数值解等应用中对更高阶光滑性的要求.基于该组基函数,提出一种Poisson方程的数值解方法,通过数值实例检验该方法的精度.Multivariate splines have wide applications in approximation theory,computer aided geometric design(CAGD) and finite element method.In 1975,Ren-Hong Wang established a new approach to study the basic theory on multivariate spline functions on arbitrary partition by presenting the so called Smoothing cofactor-conformality method.As the large applications in CAGD et al.,Ren-Hong Wang discussed the dimension and B-spline basis of the C1 cubic spline spaces on type-2 triangulation partition,which is denoted by S13(Δ(2)mn).Accordingly we analyze the C3 quintic spline spaces on type-2 triangulation partition S35(Δ(2)mn).The dimension and one group of B spline basis of S35(Δ(2)mn)are given.High derivatives is satisfied in applications.Based on the basis one numerical scheme is proposed to simulate the Poisson equation.Numerical examples are given to show the validity of the scheme.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15