检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李桂芳[1] 孙勇成[2] 林坚[1] 黄圣国[1]
机构地区:[1]南京航空航天大学民航(飞行)学院,南京210016 [2]中国电子科技集团28所,南京210007
出 处:《科学技术与工程》2012年第31期8143-8146,共4页Science Technology and Engineering
摘 要:车辆GPS/DR组合导航系统是非线性系统。采用扩展卡尔曼滤波(EKF)对其进行状态估计时,系统线性化过程将导致较大的滤波误差。为了获得更好的估计性能,将一类改进的粒子滤波方法 (UPF),即以无位卡尔曼滤波(UKF)为建议密度的粒子滤波方法(PF)应用于车辆GPS/DR组合导航系统中,避免了EKF方法的线性化近似过程,提高载体的定位精度。为验证该方法的有效性,将其与EKF分别用于GPS/DR组合导航系统的滤波仿真。仿真结果表明:UPF能减小导航定位误差,滤波性能明显优于EKF。The model of GPS/DR integrated navigation system is nonlinear, and there are great estimation er- rors due to necessarily linearize the intrinsic nonlinear systems if the Extended Kalman Filter (EKF) is used. In or- der to acquire better performance, an advanced particle filter algorithm named UPF is applied in GPS/DR integrat- ed navigation system, which adopts Unscented Kalman Filter (UKF) as its' proposal distribution. Due to avoiding the approximate linearizing process, the method can improve the positioning accuracy of carrier. In order to test the validity of the UPF, the two methods are compared in the process of estimating state of the vehicle integrated GPS/ DR navigation systems. The simulation results show that the UPF can reduce the errors of navigation position, and outperform EKF in terms of accuracy.
关 键 词:GPS/DR系统 组合导航 状态估计 扩展卡尔曼滤波 粒子滤波
分 类 号:P228.4[天文地球—大地测量学与测量工程] TP399[天文地球—测绘科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117