l^2序列空间上的非凸集稀疏正则化  

Non-convex Sparse Regularisation on the Sequence Space l^2

在线阅读下载全文

作  者:郭二玲[1] 季光明[1] 杨茜[1] 

机构地区:[1]成都理工大学管理科学学院,成都610059

出  处:《四川理工学院学报(自然科学版)》2012年第6期79-82,共4页Journal of Sichuan University of Science & Engineering(Natural Science Edition)

摘  要:利用l2序列空间上独立作用于已知序列的系数的加权的非二次罚项的Tikhonov正则化的正则化性质可以推导出保证罚项的适定的充分条件,而且重点是带有稀疏约束的求解算子方程的应用。从在罚项在零点的线性增长,可以证明所有正则化解的稀疏。The regularising properties of Tikhonov regularisation on the sequence space l2 with weighted non-quadratic penalty term acting separately on the coeffeients of a given sequence can be used to derive sufficient conditions for the penalty term that guarantee the wellposedness of the method, and the focus is the application to the solution of operator equations with sparsity constraints. Assuming a linear growth of the penalty term at zero, the sparsity of all regularised solutions can be proved.

关 键 词:TIKHONOV正则化 稀疏 收敛率 

分 类 号:O29[理学—应用数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象