检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘晓梅[1] 周钢[2] 王永泓[1] 孙薇荣[2]
机构地区:[1]上海交通大学机械与动力学院,上海200240 [2]上海交通大学数学系,上海200240
出 处:《北京航空航天大学学报》2013年第1期22-26,共5页Journal of Beijing University of Aeronautics and Astronautics
基 金:国家自然科学基金资助项目(50876066)
摘 要:辛算法较RK(Runge-Kutta)方法,保持辛结构不变或保持哈密顿系统规律性不变是突出的优点,但点态数值精度并不理想.推导出了三阶、四阶辛算法的漂移量计算公式,通过补偿漂移量就能提高点态数值精度,既保辛结构又保证点态数值高精度,适合于工程应用.建立了分数步对称辛算法(即FSJS算法)的纠漂公式,制定了漂移的约束标准.相关算例的数值结果表明:三阶FSJS算法漂移量最小,点态数值精度更高.Symplectic algorithm preserves the symplectic structure and laws for Hamiltonian systems com- pared with Runge-Kutta(RK) methods, but the point-wise numerical precision is worse for elliptic Hamihoni- an systems. In order to improve it, the average statistic drift formulae of the third-order symplectic method and the fourth-order scheme were deduced. The precision was improved through compensating the drifts and step segmentation. A standard was built to find a better symplectic scheme in phase drift. The results of examples show that the third-order fractional step and symmetric symplectic algorithm( FSJS3 algorithm) is higher than the fourth-order one in phase accuracy, which is recommended for engineering application.
关 键 词:辛算法 RUNGE-KUTTA法 相位漂移 哈密顿函数
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229