检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学应用数学系,陕西西安710072
出 处:《纺织高校基础科学学报》2013年第1期130-136,共7页Basic Sciences Journal of Textile Universities
基 金:国家自然科学基金资助项目(11071196)
摘 要:借鉴求线性矩阵方程约束最小二乘(Ls)解的修正共轭梯度法,建立了求特殊类型的双矩阵变量线性矩阵方程的广义自反Ls解的迭代算法,证明了迭代算法的收敛性.利用该算法可在有限步迭代计算后求得矩阵方程的一组广义自反Ls解,选取特殊的初始矩阵时,可求得矩阵方程的极小范数广义自反Ls解.此外,还可求得在该矩阵方程的广义自反Ls解集合中对给定矩阵的最佳逼近.数值算例表明,迭代算法是有效的.Based on the method of the modified conjugate gradient to the linear matrix equation over constrained least square solution, an iterative algorithm is presented to find the generalized reflexive least square solution of the linear matrix equation which is a special type with two matrix variables. The convergence of the iterative method is proved. By this method, an generalized reflexive least square solution of the matrix equation can be obtained within finite iterative steps. And the generalized reflexive least square solution with least-norm can be got by choosing special initial matrices. Besides, the optimal approximation to any given matrix can be obtained in the set of the generalized reflexive least square solution. The numerical examples show that the iterative algorithm is quite efficient.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229