一致凸Banach空间渐近非扩张映像的收敛定理  

The Convergence Theorms for Asymptotically Non-expanstive Mapping in a Uniformly Convex Banach Space

在线阅读下载全文

作  者:苏永福[1] 

机构地区:[1]沧州师范专科学校数学系,河北沧州061001

出  处:《河北师范大学学报(自然科学版)》2001年第2期151-154,共4页Journal of Hebei Normal University:Natural Science

基  金:河北省自然科学基金!资助项目 (19815 5 )

摘  要:Hilbert空间中渐近非扩张映像的 Ishikawa迭代的收敛定理已被证明 ,后又被推广到一致凸 Ba-nach空间 ,证明了有界闭凸集上渐近非扩张映像的 Ishikawa迭代的收敛定理 .现将其进一步推广到一般凸集上 ,且减弱了相关条件 .The convergence theorm of Ishikawa iterative for asymptotically non-expansitve mapping in a Hilbert space was proved. The relative results is extended to a uniformly convex Banach space that T is asymptotically non-expanstive mapping from bounded closed convex subset E into self.Now suppose only E is closed convex subset in uniformly convex Banach space.The convergence theorms of Ishikawa iterative for asymptotically non-expanstive mapping is still proved and the relative conditions is also weakened.

关 键 词:一致凸Barach空间 有界闭凸集 渐近非扩张映像 ISHIKAWA迭代 收敛定理 一般凸集 

分 类 号:O177.91[理学—数学] O177.2[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象