检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邱春晖[1]
机构地区:[1]厦门大学数学系,厦门361005
出 处:《数学物理学报(A辑)》2001年第4期485-491,共7页Acta Mathematica Scientia
基 金:国家自然科学基金(1977106);福建省自然科学基金(A9810001);国家自然科学基金委数学天元基金资助项目(TY10
摘 要:利用权因子,我们得到了复流形上边界不必光滑的强拟凸域上(p,q)微分形式的带权因子的Koppelman-Leray公式及其 -方程的带权因子的解,其特点是不含有边界积分.从而避免了边界积分的复杂估计.其次,引进了权因子,带权因子的积分公式在应用上具有更大的灵活性.Using weight factors, we obtain the Koppelman-Leray formula with weight fac- tors of (p,q) differential forms for a strictly pseudoconvex domain with not necessarily smooth boundaries on a complex manifold, and give an integral representation for the solu- tion with weight factors of -equation on this domain which does not involve integral on boundary, so we can avoid complex estimates of boundary integrals. Furthermore, with the introduction of weight factors, the integral formulas with weight factors have much freedom in application.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.121.190