检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《自动化学报》2001年第6期806-815,共10页Acta Automatica Sinica
摘 要:泛化能力是多层前向网最重要的性能 ,泛化问题已成为目前神经网络领域的研究热点 .文中综述了神经网络泛化理论和泛化方法的研究成果 .对泛化理论 ,重点讲述神经网络的结构复杂性和样本复杂性对泛化能力的影响 ;对泛化方法 ,则在介绍每种泛化方法的同时 ,尽量指出该方法与相应泛化理论的内在联系 .Generalization ability is the most important performance of a feed-forward neural network, and the problem of generalization is widely studied recently among the neural network community. Research on this subject can be divided into two fields: generalization theory discusses the factors that affect the generalization ability, while generalization methods try to find algorithms for improved performance. This survey reviewed the main results on generalization research, and tried to point out the relationship between generalization theory and corresponding generalization methods. A prospect on generalization research was also given.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30