随机Cahn-Hilliard方程的一种差分逼近  被引量:1

A DIFFERENCE APPROXIMATION OF STOCHASTIC CAHN-HILLIARD EQUATION

在线阅读下载全文

作  者:陈豫眉[1] 黄良成[1] 敖斌[1] 

机构地区:[1]西华师范大学数学与信息学院,南充637009

出  处:《高等学校计算数学学报》2014年第3期236-252,共17页Numerical Mathematics A Journal of Chinese Universities

基  金:西华师范大学基金项目(10B013);国家自然科学基金项目(11271390)

摘  要:Stochastic Cahn-Hilliard equation is an equation of the field theory for solving the Non-equilibrium dynamics problem in a weak state and is a case of nonlinear Langevin equation.In this paper,using the ackward difference method(BDM),a numerical solution of the stochastic C-H equation is proposed and using the Ito formula,probability and the martingale theory,the convergence of the numerical process is proved in the meaning of mean square.Stochastic Cahn-Hilliard equation is an equation of the field theory for solving the Non-equilibrium dynamics problem in a weak state and is a case of nonlinear Langevin equation. In this paper, using the ackward difference method (BDM), a numerical solution of the stochastic C-H equation is proposed and using the Ito formula, probability and the martingale theory, the convergence of the numerical process is proved in the meaning of mean square

关 键 词:CAHN-HILLIARD方程 随机偏微分方程 差分逼近 非线性波动方程 随机介质 波动规律 国内外 物理 

分 类 号:O242.28[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象