检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨勇[1] 杨庆余[1] 林巍[1] 王存堂[1] 张舵[1] 董原[1] 宋春丽[1] 裴世春[1] 李毛毛[1] 胥红利
机构地区:[1]齐齐哈尔大学食品与生物工程学院,农产品加工黑龙江省普通高校重点实验室,黑龙江齐齐哈尔161006
出 处:《食品科学》2014年第8期259-262,共4页Food Science
基 金:黑龙江省普通高校青年学术骨干支持计划项目(1252G069);黑龙江省自然科学基金项目(C201331);齐齐哈尔市科技局农业攻关项目(NYGG-201206-3);齐齐哈尔大学校重点资助项目(2012K-Z03)
摘 要:目的:应用近红外光谱技术快速检测鹅肉的嫩度值.方法:采集完整鹅肉的近红外光谱(950~1 650 nm),光谱经多种校正预处理后,再分别采用主成分回归和偏最小二乘法建立鹅肉嫩度的定量预测数学模型.结果:采用5点移动窗口平滑处理结合偏最小二乘法所建立模型的预测效果最好,嫩度定量校正数学模型的模型决定系数为0.908 0,内部交互验证均方根误差为113.618 6.用此模型对预测集20个样品进行预测,预测值与实测值的相关系数达到0.971 1,预测值平均偏差为21.673 g,预测值和实测值之间没有显著性差异(P>0.05).结论:近红外光谱作为一种无损快速的检测方法,可用于评价鹅肉的嫩度.Objective:To propose a rapid method for the identification of goose tenderness by near infrared spectroscopy (NIR) technology.Methods:NIR spectra (950-1 650 nm) of goose meat were collected.After multiple correction and pretreatment of the spectra,mathematical models for the quantitative prediction of goose tenderness were established by principal component regression (PCR) and partial least squares regression (PLSR).Results:The PLSR model based on five-point moving window smoothing was the best predictive model with a determination coefficient (R2) of 0.908 0 and a root mean square error of cross validation (RMSECV) of 113.618 6.No significant difference (P > 0.05) was found between the predicted and measured values for 20 samples in the prediction set,with a correlation coefficient of 0.971 1,and the predicted values showed an average bias of 21.673 g.Conclusion:NIR can be used in the evaluation of goose meat tenderness as a fast nondestructive detection method.
分 类 号:TS251.7[轻工技术与工程—农产品加工及贮藏工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.207