检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京师范大学数学科学学院,江苏省大规模复杂系统数值模拟重点实验室,南京210023
出 处:《南京师大学报(自然科学版)》2014年第4期31-40,共10页Journal of Nanjing Normal University(Natural Science Edition)
基 金:国家自然科学基金(11071122);江苏省自然科学基金(BK2009397);江苏省高校自然科学研究项目(13KJD110007)
摘 要:广义纳什均衡问题是一种非合作博弈,其每个竞争者的策略集和目标函数都要依靠其他竞争者的策略.它在经济学、管理科学及交通运输等领域都有广泛的应用,但如何有效地求解广义纳什均衡问题仍然是备受关注的课题.本文提出了带有BB步长的自适应投影法求解广义纳什均衡问题:首先,把广义纳什均衡问题转化成拟变分不等式问题,然后把BB步长推广到求解拟变分不等式问题上,并在函数余强制条件下证明了算法的全局收敛性.数值结果进一步说明该方法的有效性.The generalized Nash equilibrium problem( GNEP) is a noncooperative game in which the strategy set of each player,as well as his payoff function, depend on the rival players ’ strategies. It can be widely used in economics, management sciences and traffic assignment,but how to effective solve the generalized Nash equilibrium problem is still a subject of concern. In this paper, we present a self-adaptive projection method with the BB-step sizes for solving generalized Nash equilibrium problems:First, we give the reformulation of a generalized Nash equilibrium. Then, we extend the BB-step sizes to the QVI formulation of the GNEP,we adopt them in projection methods,and prove that under the condition that the underlying function is co-coercive,the sequence generated by the method converges to a solution of the quasi-variational inequality problem globally. Some preliminary computational results are reported, which illustrate that the new method is efficient.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.75