检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京大学数学学院
出 处:《数学进展》2002年第3期229-236,共8页Advances in Mathematics(China)
摘 要:本文利用局部Lipschitz泛函的临界点理论,来得到一个改进的半线性方程的Landesman-Lazer型结果.问题来自于力学,称为变分不等式的特征值问题.在[3]中,D.Goeleven,D.Motreanu和P.D.Panagiotopoulos等人讨论了共振的情形,并得到了弱解的存在性的结果.但是,在他们结论中(见[3]中定理4.1);条件(H1)与(H2)却是互不相容的.本文得到了变分不等式的特征值问题在共振情形下的弱解存在性的相应结果.In this paper we seek for an improved Landesman-Lazer result on a kind of semi-linear partial differential equations. The proposed problem was motivated in the mechanics where the problem is to find an eigenvalue solution to the so-called variational inequality. In a preceeding paper, D. Goeleven, D. Motreanu and P. D. Panagiotopoulos reached an existence result of a weak solution to the variational inequality in resonant case. Howerer, there is an intrinsic contradiction in the conditions of their main theorem. We prove a similar existence result which is the rectification of the main theorem in the afore-mentioned paper.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143