检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]新疆大学电气工程学院,乌鲁木齐830047 [2]新疆大学机械工程学院,乌鲁木齐830047
出 处:《计算机应用》2015年第8期2227-2232,2237,共7页journal of Computer Applications
基 金:国家自然科学基金资助项目(61463047;51467019)
摘 要:针对分数阶混沌时间序列预测精度低、速度慢的问题,提出了基于量子粒子群优化(QPSO)算法的新型正交基神经网络预测模型。首先,在Laguerre正交基函数的基础上提出一种新型正交基函数,并结合神经网络拓扑构成新型正交基神经网络;其次,利用QPSO算法优化新型正交基神经网络参数,将参数优化问题转化为多维空间上的函数优化问题;最后,根据已优化参数建立预测模型并进行预测分析。分别以分数阶Birkhoff-shaw和Jerk混沌系统为模型,利用Adams-Bashforth-Moulton预估-校正法产生混沌时间序列作为仿真对象,进行单步预测对比实验。仿真表明,与反向传播(BP)神经网络、径向基函数(RBF)神经网络及普通的新型正交基神经网络相比,基于QPSO算法的新型正交基神经网络的平均绝对值误差(MAE)、均方根误差(RMSE)明显减小,决定度系数(CD)更接近于1,平均建模时间(MMT)明显缩短。实验结果表明,基于QPSO算法的新型正交基神经网络提高了分数阶混沌时间序列预测的精度和速度,便于该预测模型的应用和推广。Since fractional order chaotic time series prediction has low precision and slow speed, a prediction model of new orthogonal basis neural network based on Quantum Particle Swarm Optimization (QPSO) algorithm was proposed. Firstly, on the basis of Laguerre orthogonal basis function, a new orthogonal basis function was put forward combined with the neural network topology to form a new orthogonal basis neural network. Secondly, QPSO algorithm was used for parameter optimization of the new orthogonal basis neural network, thus the parameter optimization problem was transformed into a function optimization problem on multidimensional space. Finally, the prediction model was established based on the optimized parameters. Fractional order Birkhoff-shaw and Jerk chaotic systems were taken as models respectively, then chaotic time series produced according to Adarrrs-Bashforth-Mouhon estimation-correction algorithm were used as the simulation objects. In the comparison experiments on single-step prediction with Back Propagation (BP) neural network, Radical Basis Function (RBF) neural network and general new orthogonal basis neural network, Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) of the new orthogonal basis neural network based on QPSO algorithm were significantly reduced, and Coefficients of Decision (CD) of it was closer to 1; meanwhile, Mean Modeling Time (MMT) of it was greatly shortened. The theoretical analysis and simulation results show that the new orthogonal basis neural network based on QPSO algorithm can improve the precision and speed of fractional order chaotic time series prediction, so the prediction model can be easily expanded and applied.
关 键 词:正交基 神经网络 量子粒子群优化算法 分数阶 混沌时间序列预测
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.137.145