检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:苏延辉[1]
机构地区:[1]福州大学数学与计算机科学学院,福建福州350116
出 处:《福州大学学报(自然科学版)》2015年第4期435-439,共5页Journal of Fuzhou University(Natural Science Edition)
基 金:国家自然科学基金资助项目(11226081);福建省自然科学基金资助项目(2013J05003)
摘 要:研究一类二维分数阶偏微分方程的边值问题,主要包括两方面内容:一是研究了合适的分数阶Sobolev空间及分数阶算子的性质;二是发展了一个弱解的理论框架,并建立了弱解的适定性理论.这是构造数值方法(如有限元和谱方法等)求解二维分数阶偏微分方程的理论基础.We investigate the boundary value problem of two- dimensional fractional partial differential equations( FEPDEs). The main contributions of this work are twofold: first,we investigate suitable fractional Sobolev spaces for fractional partial differential equations and study the properties of the fractional operator. Then,we develop a theoretical framework of weak solutions and establish the well-posedness of the weak solutions. Consequently,this work provides the theory for constructing numerical method such as finite element method and spectral method for solving the fractional partial differential equations.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117