检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《杭州师范大学学报(自然科学版)》2015年第4期418-422,共5页Journal of Hangzhou Normal University(Natural Science Edition)
基 金:Supported by the Natural Science Foundation of Zhejiang Province(LY13A010019)
摘 要:定义了weakly almost clean环.交换环R叫做weakly almost clean环,如果对于任意一个元素x∈R可以写成x=r+e或x=r-e的形式,其中r∈reg(R)且e∈Id(R).首先,对于环Ri的非空集合{Ri},证明了直和R=∏i∈IRi为weakly almost clean当且仅当存在m∈I使Rm为weakly almost clean且对所有的n≠m,Rn为almost clean.然后,设R是一个环且M为一个R-模,得到了R和M的平凡扩张R(M)为weakly almost clean当且仅当每个x∈R可以写成x=r+e或x=r-e的形式,其中r∈R-(Z(R)∪Z(M))且e∈Id(R).进而推广了almost clean环的相应结果.This paper defines weakly almost clean rings.A commutative ring Ris a weakly almost clean ring if every element x∈Rcan be written in the formx=r+e or x=r-e where r∈reg(R)and e∈Id(R).Firstly,for a nonempty collection{Ri}of rings Ri,the product R =∏if and onl∈IRiis weakly almost clean iy if there exists m∈Isuch that Rmis weakly almost clean and Rnis almost clean for all n≠m.Further,let Rbe a ring and M be an R-module,the trivial extension R(M)of Rand Mis weakly almost clean if and only if each x∈Rcan be written in the formx=r+e or x=r-e where r∈R-(Z(R)∪Z(M))and e∈Id(R).These extend the corresponding results on almost clean rings.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38