检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邱燕燕[1] 孙娟娟[1] 魏肖鹏[1] 栾广忠[1,2] 张玉静[1] 胡亚云[1] 辰巳英三[3]
机构地区:[1]西北农林科技大学食品学院,杨凌712100 [2]陕西省农产品加工工程技术研究中心,杨凌712100 [3]日本国际农林水产业研究中心
出 处:《中国粮油学报》2015年第10期123-126,146,共5页Journal of the Chinese Cereals and Oils Association
基 金:中日合作项目(K332021107)
摘 要:利用傅里叶变换近红外光谱仪采用积分球漫反射方式对60个豆浆样品进行光谱的采集,结合常规分析结果分别建立了3种成分的近红外校正模型。结果表明:豆浆蛋白质、脂肪及可溶性固形物光谱分别经过消除常数偏移量、一阶导数和矢量归一化(SNV)预处理后建模效果最好。蛋白质、脂肪和可溶性固形物含量的校正模型决定系数(R2)分别为:0.966 4、0.950 0和0.950 7,交叉验证均方根差(RMSECV)依次为0.076 9、0.087 4和0.316;对模型进行外部验证,验证集化学值和模型预测值之间差异不显著,说明模型可以用于豆浆中蛋白质、脂肪和可溶性固形物含量的检测。With the mode of integrating sphere diffuse, the spectra of 60 soy milk samples were obtained by the Fourier transform near - infrared spectrometer ( FT - NIRS) in this research. Combined with the results of chemical analysis, the calibration models of the three components were established separately. The calibration models had a best prediction performance when the spectra of the protein, fat and soluble solids were preprocessed by constant offset elimination, first derivative and standard normal variate transformation (SNV) respectively. The determination coefficients (R2 ) for the protein, fat and soluble solids content were 0.966 4, 0.950 0 and 0.950 7 respectively, and the root mean square errors of cross-validation (RMSECV) were 0.076 9, 0.087 4 and 0. 316 respectively. External validation of the model showed there was no significant difference between chemical values and model predictions, which indicated that the calibration models could be used to detect protein, fat and soluble solids content of soy milk.
关 键 词:傅里叶变换近红外光谱 豆浆 蛋白质 脂肪 可溶性固形物
分 类 号:TS207.3[轻工技术与工程—食品科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30