分数阶微分不等式及其在分数阶奇摄动初值问题中的应用(英文)  被引量:3

Fractional Differential Inequality and its Application of Fractional Singularly Perturbed Initial Value Problems

在线阅读下载全文

作  者:滕兴虎[1] 李静[1] 寇冰煜[1] 毛自森[1] 

机构地区:[1]解放军理工大学理学院,南京211101

出  处:《大学数学》2017年第1期57-62,共6页College Mathematics

基  金:PLA University of Science and Technology(LYQNJJ1408)

摘  要:利用分数阶微分方程与微分不等式之间的关系,得到了分数阶微分不等式的相关理论.基于此理论研究了分数阶微分方程的奇摄动初值问题,证明了其解的存在性.同时通过恰当不等式的解,估计了方程的精确解,进而得到分数阶奇摄动初值问题解的存在性及其渐进行为的一般结论..By analyzing the relation of solutions between fractional differential inequalities and fractional differential equations, the theory of fractional differential inequalities is obtained. And based on the theory, the singularly perturbed initial value problem of fractional differential equations is studied and the existence of solutions is proved. In terms of the solutions of an appropriate inequalities,the exact solution is estimated and then the general results about the initial value problem is established.

关 键 词:分数阶微分方程 分数阶微分不等式 奇摄动 初值问题 

分 类 号:O175.14[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象