与薛定谔算子相关的Riesz变换和交换子在加权Morrey空间上的有界性  

Boundedness for Riesz Transforms Related to Schr?dinger Operators and Their Commutators on Weighted Morrey Spaces

在线阅读下载全文

作  者:刘宇[1] 张静[1] 

机构地区:[1]北京科技大学数理学院,北京100083

出  处:《数学进展》2017年第3期429-440,共12页Advances in Mathematics(China)

基  金:Supported by NSFC(No.11671031,No.11471018);the Fundamental Research Funds for the Central Universities(No.FRF-TP-14-005C1);Program for New Century Excellent Talents in University;the Beijing Natural Science Foundation(No.1142005)

摘  要:令L=-△+V是薛定谔算子,其中△是R^n上的拉普拉斯算子,并且非负位势V属于逆H?lder类Bq(q≥n/2).与算子L相关的Riesz变换记为T_1=V(-△+V)^(-1)和T_2=V^(-1/2)(-△+V)^(-1/2),对偶Riesz变换记为T_1~*=(-△+V)^(-1)V和T_2~*=(-△+V)^(-1/2)V^(-1/2).本文建立了T_1~*和T_2~*以及他们的交换子在与位势V∈Bq,q≥n/2相关的加权Morrey空间L_(α,V,ω)^(p,λ)(R^n)上的有界性.这些结果实质性地推广了一些已知的结果.作为应用,本文的结果可以应用于Hermite算子的情形.Let L =-△+ V be a Schr?dinger operator,where A is the Laplacian on R^n and the nonnegative potential V belongs to the reverse H?lder class Bq for q ≥n/2.The Riesz transforms associated with the operator L are denoted by T1 = V(-△ + V)^(-1) and T2 =V^(-1/2)(-△ + V)^(-1/2) and the dual Riesz transforms are denoted by T1^* =(-△ + V)^(-1)V and T2^* =(-△ + K)^(-1/2)V^(-1/2).In this paper,we establish the boundedness for the operator T1^* and T2^* and their commutators on weighted Morrey spaces L(α,V,ω)^(p,λ)(R^n) associated with the potential V ∈ Bq for q ≥ n/2.These results generalize substantially some well-known results.As an application,we can apply our results to the case of Hermite operators.

关 键 词:MORREY空间 交换子 逆Holder不等式 薛定谔算子 RIESZ变换 

分 类 号:O174.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象