检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《数学进展》2017年第3期429-440,共12页Advances in Mathematics(China)
基 金:Supported by NSFC(No.11671031,No.11471018);the Fundamental Research Funds for the Central Universities(No.FRF-TP-14-005C1);Program for New Century Excellent Talents in University;the Beijing Natural Science Foundation(No.1142005)
摘 要:令L=-△+V是薛定谔算子,其中△是R^n上的拉普拉斯算子,并且非负位势V属于逆H?lder类Bq(q≥n/2).与算子L相关的Riesz变换记为T_1=V(-△+V)^(-1)和T_2=V^(-1/2)(-△+V)^(-1/2),对偶Riesz变换记为T_1~*=(-△+V)^(-1)V和T_2~*=(-△+V)^(-1/2)V^(-1/2).本文建立了T_1~*和T_2~*以及他们的交换子在与位势V∈Bq,q≥n/2相关的加权Morrey空间L_(α,V,ω)^(p,λ)(R^n)上的有界性.这些结果实质性地推广了一些已知的结果.作为应用,本文的结果可以应用于Hermite算子的情形.Let L =-△+ V be a Schr?dinger operator,where A is the Laplacian on R^n and the nonnegative potential V belongs to the reverse H?lder class Bq for q ≥n/2.The Riesz transforms associated with the operator L are denoted by T1 = V(-△ + V)^(-1) and T2 =V^(-1/2)(-△ + V)^(-1/2) and the dual Riesz transforms are denoted by T1^* =(-△ + V)^(-1)V and T2^* =(-△ + K)^(-1/2)V^(-1/2).In this paper,we establish the boundedness for the operator T1^* and T2^* and their commutators on weighted Morrey spaces L(α,V,ω)^(p,λ)(R^n) associated with the potential V ∈ Bq for q ≥ n/2.These results generalize substantially some well-known results.As an application,we can apply our results to the case of Hermite operators.
关 键 词:MORREY空间 交换子 逆Holder不等式 薛定谔算子 RIESZ变换
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.209.158