分数阶导数的非线性微分方程边值问题  

The Boundary Value Problem of Nonlinear Differential Equation of Fractional Derivative is Obtained by Continuous Function

在线阅读下载全文

作  者:朱垚 

机构地区:[1]武汉设计工程学院,湖北武汉430072

出  处:《内蒙古师范大学学报(自然科学汉文版)》2017年第6期807-809,共3页Journal of Inner Mongolia Normal University(Natural Science Edition)

基  金:湖北省高等学校省级教学研究项目(2012458)

摘  要:利用连续函数研究分数阶导数的非线性微分方程边值问题.通过确界定理和单调有界定理,结合构造方法对连续函数进行构造.在给定分数阶导数的条件下,引入扰动方法,利用Green函数定义非线性分数阶导数的微分方程积分算子,运用Banach压缩映像理论,证明了在连续函数空间内分数阶导数的非线性微分方程边值存在唯一解.The nonlinear differential equations of fractional derivative boundary value problem is studied by using continuous functions.A continuous function is constructed by supremum theorem and monotone bounded theorem combined with the construction method.The fractional derivative is given under the condition of introducing perturbation method,differential equation of nonlinear fractional integral operators is defined by the derivative of Green function.Banach compressed image theory has proved in continuous function space of nonlinear differential equations of fractional derivative boundary value has a unique solution.

关 键 词:非线性 分数阶导数 积分边界条件 微分方程 存在性 

分 类 号:O178[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象