检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:盛俊 缪小平 Sheng Jun;Miao Xiaoping(Graduate School,The Army Engineering University of PLA,Nanjing 210007)
出 处:《高等学校计算数学学报》2018年第3期263-274,共12页Numerical Mathematics A Journal of Chinese Universities
摘 要:波动方程是由麦克斯韦方程组导出的一种重要的偏微分方程,在声学、电磁学和流体力学等领域都有着十分广阔的应用,但波动方程的精确解一般很难求出,因此对其数值解法的研究就具有重要的实际意义.波动方程的数值解法主要包括有限差分法(Finite Difference Method,FDM)、有限元法、谱方法等.The stability conditions for solving the traditional finite difference method in solving the wave equation when the limit and the problem of low calculation efficiency, this paper proposes a AH (Associated Hermite) orthogonal basis function and the finite difference method (Finite Difference Method, FDM) - numerical algorithm combining-AH-FDM algorithm. In this algorithm, the wave equation is expanded by Hermite polynomial, and the time derivatives is eliminated by Galerkin method, and the unconditional convergence of the difference scheme is realized. Numerical examples show that, compared with the traditional finite difference method and the alternating direction implicit difference method, the proposed algorithm breaks the stability conditions and has higher efficiency while maintaining high accuracy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7