检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《高等学校计算数学学报》2002年第3期199-205,共7页Numerical Mathematics A Journal of Chinese Universities
摘 要:A = (aij) ∈ Rn×n is called anti-bisymmetric matrix if aij=-aij,aij =-an-j+1,,n-i+1,i ,j=1,2,… ,n. We denoted the set of all n × n anti-bisymmetric ma-trices by ABSRin×n. In this paper, we discuss the following two problems:Problem I: Given X,B∈Rn×n, find A∈ABSRn×n such that ‖ AX-B ‖=mix, where ‖‖ is the Frobenius norm.Problem I: Given X,B∈Rn×n, find A∈ABSRn×n such that ‖ A* -A ‖ =inf ‖ A* -A‖ , where SE is the solution set of Problem I .A∈SEFor problem I , the general form of SE has been given. For problem I , theexpression of the solution has been provided.A=(aij)∈Rn×n is called anti-bisymmetric matrix if aij=-aji,aij=-an-j+1,n-i+1,i,j=1,2,… ,n. We denoted the set of all n*n anti-bisymmetric matrices by ABSRn×n. In this paper, we discuss the following two problems:Problem Ⅰ , Given X,B∈Rn×m, find A∈ABSRn×m such that ||AX-B|| = mix, where || || is the Frobenius norm.Problem Ⅱ : Given X,B∈Rn×m, find A∈ABSRn×n such that || A∈-A || =inf || A∈ -A || , where SE is the solution set of Problem Ⅰ . A∈SEFor problem Ⅰ , the general form of SE has been given. For problem Ⅱ , the expression of the solution has been provided.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3