检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王国勋[1] 舒启林[1] 王军[1] WANG Guoxun;SHU Qilin;WANG Jun(School of Mechanical Engineering,Shenyang Ligong University,Shenyang Liaoning 110159,China)
机构地区:[1]沈阳理工大学机械工程学院,辽宁沈阳110159
出 处:《机床与液压》2018年第23期35-42,共8页Machine Tool & Hydraulics
基 金:辽宁省教育厅科学研究一般项目(L2014080);辽宁省企业项目博士后资助项目
摘 要:针对六自由度工业机器人,基于旋量理论,运用旋量指数积方法对机器人进行运动学建模,基于此模型对机器人逆运动学进行求解。根据机器人的构型,提出一类子问题,即两关节相互平行且与第三关节垂直,运用旋量理论及已知的Paden-Kahan子问题对该类子问题的求解进行推导。基于旋量法对速度雅可比矩阵进行推导,在此基础上对机器人的奇异性进行分析,求出奇异形位各关节的角度值,为机器人的轨迹规划和实时控制提供理论基础和重要数据。运用MATLAB对运动学求解及奇异性分析进行仿真,仿真结果显示:所建立的运动学模型正确,求解算法精度高,奇异性分析结果正确。Based on the screw theory,the kinematics modeling for the 6R robot was carried out by means of the screw POE method.Based on this model,the inverse kinematics of the robot was solved.According to the configuration of the robot,a class of sub-problem was proposed,that was,the two joints were parallel to each other and perpendicular to the third joint.The solution of this kind of sub-problem was deduced by using the screw theory and the known Paden-Kahan sub-problem.Based on the screw method,the velocity Jacobi matrix was deduced.On this basis,the singularity of the robot was analyzed,and the angle value of the singularity joint was obtained,which provided theoretical basis and important data for the trajectory planning and real-time control of the robot.The kinematics solution and singularity analysis were simulated by MATLAB.The simulation results show that the kinematic model is correct,the algorithm has high precision and the singularity analysis result is correct.
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.158