基于RBF神经网络的机械臂自适应控制方法  被引量:10

Adaptive Control Method of Manipulators Based on RBF Neural Network

在线阅读下载全文

作  者:程林云 张雷 宋晓娜 Cheng Linyun;Zhang Lei;Song Xiaona(School of Electrical Engineering, Henan University of Science and Technology, Luoyang 471023, China;Henan Province Engineering Laboratory of Power Electronic Device and System, Luoyang471023, China)

机构地区:[1]河南科技大学电气工程学院,河南洛阳471023 [2]电力电子装置与系统河南省工程实验室,河南洛阳471023

出  处:《计算机测量与控制》2019年第7期79-84,共6页Computer Measurement &Control

基  金:国家自然科学基金(61203047,U1604146);河南省产学研合作项目(162107000027)

摘  要:针对机械臂受内部摩擦和时变扰动等不确定性因素的影响,其轨迹跟踪控制系统的跟踪精度会下降,且影响系统的稳定性,提出一种基于径向基函数神经网络的自适应控制方法;首先,利用RBF神经网络采用离线训练和在线学习的方式对机械臂的动力学模型进行辨识;其次针对机械臂控制系统中的摩擦,设计RBF神经网络自适应控制算法对其进行逼近得到补偿控制量;针对时变扰动和神经网络逼近误差设计鲁棒项,以克服众多不确定性因素带来的影响,同时通过构造李亚普诺夫函数对所设计的控制系统进行稳定性分析;最后,仿真实验结果证明提出的控制方法具有较高的跟踪精度、抗干扰能力和较强的鲁棒性。Aiming at the manipulator is affected by uncertainties such as internal friction and time-varying disturbance, the tracking accuracy of its trajectory tracking control system will decrease and affect the stability of the system, an adaptive control method based on radial basis function (RBF) neural network is proposed. Firstly, the RBF neural network is used to identify the dynamic model of the manipulator by offline training and online learning. Secondly, the RBF neural network adaptive control algorithm is designed to approach the friction in the manipulator control system to obtain the compensation control. The robust term is designed for time-varying disturbance and neural network approximation error to overcome the influence of many uncertain factors. At the same time, the Lyapunov function is constructed to analyze the stability of the designed control system. Finally, simulation results show that the proposed control method has higher tracking accuracy, anti-interference ability and stronger robustness.

关 键 词:机械臂 神经网络 辨识器 自适应控制 李亚普诺夫函数 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象