检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:薛国号 陈巧玉 许银胜 叶杰[1] XUE Guohao;CHEN Qiaoyu;XU Yinsheng;YE Jie(NationalLocal Joint Engineering Laboratory of Automobile Parts Technology,South China University of Technology,Guangzhou 510640,China)
机构地区:[1]华南理工大学汽车零部件技术国家地方联合工程实验室,广东广州510640
出 处:《机械与电子》2020年第8期7-11,16,共6页Machinery & Electronics
基 金:国家自然科学基金项目(51575789);车联网环境下智能网联汽车群体协作与优化控制(2019A1515110562)。
摘 要:针对智能汽车避障路径规划问题,提出一种基于直接配点法的避障路径规划方法。建立了智能汽车的运动学模型、障碍车辆的边界模型、道路可行驶区域模型和临界碰撞约束条件等,并将智能汽车的避障路径规划问题归结为最优控制问题。基于直接配点法将避障路径规划问题中的状态及控制变量离散化,并基于三阶Simpson公式将运动学约束条件转化为节点及配点处的状态及控制变量离散值的等式约束条件,从而将上述路径规划问题转化为非线性规划问题(NLP)进行求解以得到最优避障路径。双移线工况下避障路径规划的仿真结果表明,其求解时间为0.83 s,具有良好的实时性,所规划的避障路径平滑,对车辆初始位置不敏感,验证了该方法的可行性。Aiming at the problem of obstacle avoidance path planning for intelligent vehicle,a method of obstacle avoidance path planning based on direct collocation method is proposed.First,the kinematics model of the intelligent vehicle,the boundary model of the obstacle vehicle,the model of the road drivable area and the critical collision constraint conditions are established.The obstacle avoidance path planning problem of the intelligent vehicle,is reduced to the optimal control problem.The direct matching point method based on the third-order Simpson formula is used to discretize the continuous state variables and control variables of the obstacle avoidance path planning problem,thereby transforming the above problems into a non-linear programming problem(NLP)with constraints to obtain the optimal obstacle avoidance path.The simulation results of the double shifting line show that the solution time is 0.83 s,which has good real-time performance.The planned obstacle avoidance path is smooth and insensitive to the initial position of the vehicle,which verifies the feasibility of the method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.120