检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张敏骏 吉晓冬[2] 李旭 瞿圆媛[2] 吴淼[2] ZHANG Minjun;JI Xiaodong;LI Xu;QU Yuanyuan;WU Miao(Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;College of Mechanical & Information Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China;Tiandi Science & Technology Co. Ltd., Beijing 100013, China;Storage & Loading Branch, China Coal Research Institute, Beijing 100013, China)
机构地区:[1]清华大学机械工程系,北京100084 [2]中国矿业大学(北京)机电与信息工程学院,北京100083 [3]天地科技股份有限公司,北京100013 [4]煤炭科学研究总院储装技术研究分院,北京100013
出 处:《西安交通大学学报》2021年第6期9-17,共9页Journal of Xi'an Jiaotong University
基 金:国家自然科学基金资助项目(51874308);国家重点基础研究发展计划资助项目(2014CB046306);天地科技股份有限公司科技创新创业资金资助项目(2020-TD-MS006)。
摘 要:针对因掘进机姿态控制精度较差导致巷道掘进轨迹偏离进而影响煤矿生产安全与效率的问题,提出了一种基于粒子群算法的掘进机姿态调整控制模型辨识方法及模糊神经网络PID姿态控制方法。首先分析了掘进机姿态角误差与巷道断面之间关系,基于姿态运动学与液压模型确定了姿态控制系统传递函数结构,通过粒子群算法的寻优特性与输入输出信号的响应对传递函数参数进行拟合进而实现辨识。仿真结果表明,与采用最小二乘和遗传算法的辨识方法相比,所提采用粒子群算法的模型辨识方法的辨识精度分别提高了96.75%和95.15%。此外,利用模糊控制的强非线性适应性与神经网络的自学习能力设计了姿态调整的PID控制系统。搭建了EBZ-55型掘进机俯仰角控制试验平台,并在不同的试验工况下进行了多组俯仰角控制试验。试验结果表明,基于粒子群模型辨识方法的模糊神经网络PID控制方法比模糊PID控制方法最多可降低57.1%的超调误差以及53.5%的响应时间,并能稳定实现1°以内的姿态角控制。该方法可为掘进机及大型液压设备的姿态控制提供有效的技术支撑与参考。Aiming at the derivation of the tunnel excavation track and the coal production inefficiency and safety problem caused by poor posture control accuracy of tunnel boring machine(TBM),a model identification method based on the particle swarm optimization(PSO)and a fuzzy neural network control method of attitude control are proposed.Firstly,the relation between the posture error and the tunnel section is analyzed,and the structure of the control system transfer function is determined according to the kinematic and hydraulic system model.Through the PSO searching character and the response of the input and output signals,the transfer function parameters could be fitted.Simulation results show that the identification accuracy based on PSO is 96.75%and 95.15%higher,respectively,than that based on least square or genetic algorithm identification method.Making use of the fuzzy logic control’strong nonlinearity adaptability and the neural network’self-learning ability,a posture PID control algorithm is proposed,and a EBZ-55 tunnel boring machine attitude control experiment system is designed and established.Experiment shows that compared with the fuzzy PID,the proposed fuzzy neural network PID control system could mostly reduce 57.1%overshoot error and 53.5%response time in different conditions,and the posture of the tunneling boring machine could be controlled in 1°stably.
关 键 词:掘进机 姿态调整 粒子群算法 模型辨识 模糊神经网络控制
分 类 号:TH86[机械工程—仪器科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46