检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周云成[1] 许童羽[1] 邓寒冰[1] 苗腾[1] 吴琼[1] Zhou Yuncheng;Xu Tongyu;Deng Hanbing;Miao Teng;Wu Qiong(College of Information and Electrical Engineering,Shenyang Agricultural University,Shenyang 110866,China)
机构地区:[1]沈阳农业大学信息与电气工程学院,沈阳110866
出 处:《农业工程学报》2021年第9期263-274,共12页Transactions of the Chinese Society of Agricultural Engineering
基 金:辽宁省教育厅基础研究项目(LSNJC202004);辽宁省自然科学基金(20180551102);国家自然科学基金(31901399)。
摘 要:为实现温室环境下机器人行进过程中的位置及姿态跟踪,该研究提出一种基于时序一致性约束的自监督位姿变换估计模型。模型用软遮罩,处理视频帧间静止造成的位姿预测值收缩现象,进一步用归一化遮罩,解决非刚体场景和目标遮挡问题。设计了一种星型扩张卷积,并基于该卷积,为模型构建自编码器。在采集自种植作物为番茄的日光温室视频数据上开展训练和测试试验。结果表明,与不采用遮罩处理的模型相比,采用软遮罩的模型,位置和姿态估计相对误差分别减少5.06个百分点和11.05个百分点,采用归一化遮罩的模型,这2项误差则分别减少4.15个百分点和3.86个百分点,2种遮罩均可显著提高模型精度;星型扩张卷积对降低模型误差是有效的,在网络参数不变的前提下,该卷积使姿态估计相对误差减少7.54个百分点;时序一致性约束使姿态估计均方根误差下降36.48%,每百帧累积姿态角误差降低54.75%,该约束可用于提高模型精度及稳定性;该研究的位置及姿态估计相对误差分别为8.29%和5.71%,与Monodepth2相比,减少了8.61%和6.83%。该研究可为温室移动机器人导航系统设计提供参考。Simultaneous localization and mapping(SLAM)play a vital role in implementing autonomous navigation of mobile robots in an unknown environment.Especially,visual odometry(VO)is a core component for a localization module in the SLAM system.The pose and velocity of a robot can,therefore,be estimated using computational geometry.Furthermore,the learning-based VO has gained great success in joint estimation camera ego-motion and depth from videos.In this study,a novel self-supervised VO model was proposed to realize the autonomous operation of a mobile robot in a greenhouse.The consistency constraint of temporal depth was also introduced for the learning framework using the binocular baseline supervision.Stereo video sequences were selected to train the model.The pose network after training was then used for pose estimation.A pre-test found that the stillness between video frames caused the prediction value of the model to shrink.Therefore,a soft mask was used in photometric re-projection error to remove the static region from the apparent difference measurement,and the non-rigidity scene and occlusion were further solved with normalized mask planes.Meanwhile,a new type of star dilated convolution(SDC)was also designed,where the filter was used to extract image features from the center 3×3 solid kernel and eight directions of 1-D kernel.The computational cost of SDC was thus less than that of the regular convolution of the same receptive field.Moreover,SDC was superimposed on spatial dimensions using depth-wise convolution with different dilation rates,particularly without the necessary to modify the existing deep learning framework.A convolutional auto-encoder(CAE)with residual network architecture was constructed using the SDC and inverse residual module(IRM),further serving as the backbone network for the VO model.With the aid of a binocular camera,the video sequences were collected in the solar greenhouses with tomato as the crop.The stereo video dataset was constructed to carry out the training and testing experi
关 键 词:机器人 温室 导航 位姿跟踪 自监督学习 视觉里程计 卷积神经网络 深度学习
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13