粉状食品计量控制系统设计  被引量:1

Design of Powder Food Measurement Control System

在线阅读下载全文

作  者:邓立群[1] DENG Liqun(Neijiang Vocational&Technical College,Neijiang 641100)

机构地区:[1]内江职业技术学院,内江641100

出  处:《食品工业》2021年第6期309-311,共3页The Food Industry

摘  要:粉状食品在包装计量过程中由于系统振动、传感器信号波动及螺杆的旋转惯性等因素的影响,使得粉状食品在计量过程中存在时滞性、非线性等特点,为克服时滞性和非线性对计量精度的影响,设计一种基于模糊神经网络PID的粉状食品计量控制系统。介绍传统的粉状计量PID控制方法,为提高传统PID控制系统的自适应能力,在传统PID控制系统中引入模糊控制和神经网络控制,利用模糊神经网络实现PID中比例、积分、微分3个参数的自适应调整。仿真结果表明,模糊神经网络PID控制方法相比于传统PID控制具有更高的控制精度,超调量更小,能够在更短时间内实现控制量的收敛。Due to the influence of system vibration, sensor signal fluctuation and screw rotation inertia in the process of powder food packaging measurement, there are time-delay and nonlinear characteristics in the measurement process of powdery food. In order to overcome the influence of time delay and nonlinearity on measurement accuracy, a powder food metering control system based on Fuzzy Neural Network PID is designed. In order to improve the self-adaptive ability of the traditional PID control system, fuzzy control and neural network control are introduced into the traditional PID control system. The fuzzy neural network is used to realize the self-adaptive adjustment of the proportion, integral and differential parameters in PID. The simulation results show that compared with the traditional PID control, the fuzzy neural network PID control method has higher control precision, smaller overshoot, and can achieve the convergence of control quantity in a shorter time.

关 键 词:粉状食品 计量 PID控制系统 模糊神经网络 

分 类 号:TS203[轻工技术与工程—食品科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象