检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姜强 梁芮铭 赵蔚 杨帆[2] JIANG Qiang;LIANG Ruiming;ZHAO Wei;YANG Fan(Northeast Normal University,Changchun Jilin 130117;Changchun Humanities and Sciences College,Changchun Jilin 130117)
机构地区:[1]东北师范大学信息科学与技术学院,吉林长春130117 [2]长春人文学院,吉林长春130117
出 处:《现代远距离教育》2021年第4期14-24,共11页Modern Distance Education
基 金:国家自然科学基金面上项目“网络学习空间中的学习风险预警模型和干预机制研究”(编号:62077012);吉林省高等教育教学改革研究课题“面向深度学习的高等教育学生课堂参与边缘化诊断及干预研究”(编号:JG2020016);吉林省社会科学基金项目(博士和青年扶持项目)“可视化技术支持在线自主学习的效能研究”(编号:2021C85)。
摘 要:知识建构实现从预设式到生成式教学的转变,让知识不再凝固,但容易受到学生主观因素的影响而出现学习效果差异。学生的主观态度跟自身学习动机关联,积极的学习动机激励知识建构,反之则阻碍学生学习。采用扎根理论方法对大学生进行半结构化访谈,并进行质性分析,归纳出知识建构动机分为自主动机和受控动机,并产生了探索、参与和迁移三个学习阶段,以及自学行为、合作行为和使用行为三种学习参与行为,进而演化为内部调节型和外部刺激型两种学习行为路径。研究成果揭示了知识建构动机的二元性及其行为的复杂性,提供了一种全面理解知识建构复杂行为的方法,扩展了知识建构动机行为的相关研究,并从认知神经科学与人工智能技术方面为知识建构实现深度学习提供新思路。Knowledge construction realizes the transformation from prefabricated to generative teaching,so that knowledge is not solidified.But it is susceptible to the influence of students’subjective factors,leading to differences in learning effects.Students’subjective attitudes are related to their own learning motivations.Positive learning motivations encourage knowledge construction,and vice versa hinders students’learning.Based on grounded theory,conducting semi-structured interviews with the interviewees,qualitatively analyzing the interview data,and summarizing categories that affect students’participation in knowledge construction learning.Motivation can be summarized as autonomous motivation and controlled motivation.Driven by motivation,students have three learning stages of exploration,participation,and transfer,as well as three learning and participation behaviors:self-study behavior,cooperative behavior,and use behavior,and then evolved into internally regulated participation and external stimulus participation.The research results reveal the duality of knowledge construction motivation and the complexity of behavior,and provide a comprehensive understanding of the complex behavior of knowledge construction,and expand the relevant research on knowledge construction motivation.It provides new ideas for the development trend of knowledge construction for deep learning from two aspects of cognitive neuroscience and artificial intelligence technology.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.31.88