基于改进启发式蚁群算法的无人机自主航迹规划  被引量:3

Autonomous Path Planning for Unmanned Aerial Vehicle(UAV)Based on Improved Heuristic Ant Colony Algorithm

在线阅读下载全文

作  者:辛建霖 左家亮[1] 岳龙飞 张宏宏 XIN Jianlin;ZUO Jialiang;YUE Longfei;ZHANG Honghong(College of Air Traffic Control and Navigation,Air Force Engineering University,Xi’an 710051,China)

机构地区:[1]空军工程大学空管领航学院,西安710051

出  处:《航空工程进展》2022年第1期60-67,共8页Advances in Aeronautical Science and Engineering

基  金:国家社会科学基金(2020-SKJJ-C-034);国家社会科学基金军事学项目(2019-SKJJ-C-026)。

摘  要:无人机自主航迹规划是未来无人机作战使用的关键技术难题。针对传统航迹规划方法存在的求解效率不高、实时性较差、容易陷入局部最优等缺点,提出一种基于改进启发式蚁群算法的无人机自主航迹规划算法。该算法前期使用Dijkstra算法进行初始化航迹,引入启发式信息,提高搜索效率;采用Logistic混沌映射初始化信息素,增加解的多样性,提高算法收敛速度;算法中、后期采用多航迹选择策略和模拟退火机制,提高全局搜索能力,避免因收敛速度过快而陷入局部最优解。对该算法进行仿真分析,结果表明:在存在威胁和障碍的复杂环境中,本文提出的改进启发式蚁群算法与标准蚁群算法相比,能够有效规划出一条从起点到终点的航迹,并且寻优精度更高,收敛速度更快,具有一定的应用价值。Autonomous path planning of UAV is a key technical problem for future UAV operation.In view of the shortcomings of traditional route planning methods,such as low efficiency,poor real-time performance,easy to fall into local optimum,an improved heuristic ant colony algorithm for UAV route planning is proposed.In the early stage of the algorithm,Dijkstra algorithm is used to initialize the track,and heuristic information is introduced to improve the search efficiency.Logistic chaotic map is used to initialize pheromone,so that the diversity of solutions can be increased and the convergence speed of the algorithm can be improved.In the middle and late stage of the algorithm,multi-track selection strategy and simulated annealing mechanism are used to improve the global search ability of the algorithm,which avoid falling into local optimum due to too fast convergence speed solution.The simulation results show that,compared with the basic ant colony algorithm,the improved ant colony algorithm can plan a path from the start to the end effectively in the complex environment with threats and obstacles.It also has higher optimization accuracy and faster convergence speed,which is of applicable value.

关 键 词:无人机 航迹规划 DIJKSTRA算法 Logistic混沌 蚁群算法 模拟退火算法 

分 类 号:V249.1[航空宇航科学与技术—飞行器设计] V279

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象