检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘金[1]
机构地区:[1]江苏省金湖中学,211600
出 处:《中学数学研究》2022年第9期55-57,共3页
摘 要:运用对相关函数求导证明不等式是近年来高考命题的一类热点题型,由于涉及许多导数问题中的解题技法,降低了解题的成功率,我们有不少同学都望而却步.此类问题的破题关键就是构造一个与待证不等式紧密联系的函数,然后运用导数运算的方法,研究该函数的单调性、极值、值域等性质,进而达到证明不等式的目的.本文以近几年高考题或模拟题为例,通过探索不同类型不等式的证明,阐述构造函数证明不等式的六种思考,供参考.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.53