检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贾晓涵 付丽霞[1] JIA Xiao-han;FU Li-xia(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China)
机构地区:[1]昆明理工大学信息工程与自动化学院,云南昆明650500
出 处:《陕西理工大学学报(自然科学版)》2023年第2期22-29,共8页Journal of Shaanxi University of Technology:Natural Science Edition
基 金:云南省重大科技专项计划项目(202002AC080001)。
摘 要:板球系统作为一种非线性的不稳定系统,影响系统的不确定因素较多。针对系统中的扰动问题,提出了一种基于趋近律的滑模控制方案。首先,系统建模时将非线性系统进行解耦,实现线性化处理,假设系统在不良环境下受到多种干扰,故在系统建模时对平板与小球同时引入不确定扰动;其次,依据Hurwitz条件设计滑模函数,在控制器的设计中对指数趋近律进行改进;定义Lyapunov函数,根据LaSalle不变性原理证明闭环系统渐进稳定;最后,利用Simulink进行仿真实验,结果表明所设计的控制方案在不同的干扰下,轨迹跟踪误差较小,系统响应速度较快,具有良好轨迹跟踪和抗干扰性能。As a nonlinear and unstable system,cricket system has many uncertain factors that affect the system.Aiming at the disturbance problem in the system,a sliding mode control scheme based on reaching law is proposed.Firstly,the nonlinear system is decoupled and linearized during system modeling.Assuming that the system is subject to multiple disturbances under adverse environment,uncertain disturbances are introduced to the tilt angle of the plate and the position of the ball simultaneously during system modeling;Secondly,the sliding mode function is designed according to Hurwitz condition,and the exponential reaching law is improved in the controller design;The Lyapunov function is defined,and the asymptotic stability of the closed-loop system is proved according to the LaSalle invariance principle.Finally,Simulink is used to carry out simulation experiments.The results show that the designed control scheme has small trajectory tracking error under different disturbances,fast system response speed,and good trajectory tracking and anti-interference performance.
关 键 词:板球系统 鲁棒性 滑模控制 趋近律 轨迹跟踪控制
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.109.97