检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:毛文平 李帅永 谢现乐 杨雪梅[1] 聂嘉炜 MAO Wen-ping;LI Shuai-yongy;XIE Xian-le;YANG Xue-mei;NIE Jia-wei(Key Laboratory of lndustrial Internet of Things&Networked Control of Ministry of Education,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
机构地区:[1]重庆邮电大学工业物联网与网络化控制教育部重点实验室,重庆400065
出 处:《控制与决策》2023年第9期2520-2528,共9页Control and Decision
基 金:国家自然科学基金项目(61703066);重庆市基础研究与前沿探索项目(cstc2018jcyjAX0536);重庆市技术创新与应用发展专项(cstc2018jszx-cyztzxX0028,cstc2019jscx-fxydX0042,cstc2019jscx-zdztzxX0053)。
摘 要:针对基本蚁群算法在二维静态栅格地图下进行移动机器人路径规划时出现的搜索效率低下、收敛速度缓慢、局部最优解等问题,提出一种自适应机制改进蚁群算法,用于移动机器人在二维栅格地图下的路径规划.首先采用伪随机状态转移规则进行路径选择,定义一种动态选择因子以自适应更新选择比例,引入距离参数计算转移概率,提高算法的全局搜索能力以及搜索效率;然后基于最大最小蚂蚁模型和精英蚂蚁模型,提出一种奖励惩罚机制更新信息素增量,提高算法收敛速度;最后定义一种信息素自适应挥发因子,限制信息素浓度的上下限,提高算法全局性的同时提高算法的收敛速度.在不同规格的二维静态栅格地图下进行移动机器人全局路径规划对比实验,实验结果表明自适应机制改进蚁群算法具有较快的收敛速度,搜索效率明显提高且具有较好的全局搜索能力,验证了所提算法的实用性和优越性.Aiming at the problems of low search efficiency,slow convergence rate,and local optimal solution when a basic ant colony algorithm is applied to mobile robot path planning under a 2D static grid map,an adaptive mechanism improved ant colony algorithm for the path planning of mobile robots under the two-dimensional grid map environment is proposed.Firstly,pseudo-random state transition rules are used.For path selection,a dynamic selection factor is defined to adaptively update the selection ratio and a distance parameter is introduced to calculate the transition probability.Hence,the global search ability and search efficiency of the algorithm is improved.Then,based on the maximum and minimum ant model and the elite ant model,a reward and punishment mechanism is proposed to update the pheromone increment.Finally,a pheromone dynamic volatilization factor is defined to limit the upper and lower range of the pheromone concentration to improve the convergence speed of the algorithm and the global search ability.The global path planning comparison experiments of the mobile robot are carried out under two-dimensional static grid maps of different specifications,and the experimental results show that the adaptive mechanism improved ant colony algorithm has a faster convergence speed and significantly improved search efficiency,and it has a better global search ability,which verifies the effectiveness and superiority of the algorithm.
关 键 词:路径规划 蚁群算法 自适应机制 移动机器人 信息素浓度 栅格地图
分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117