基于蚁群粒子群融合的多机器人协同路径规划算法  被引量:1

A Multi-robot Cooperative Path Planning Algorithm Based on Ant Colony Particle Swarm Fusion

在线阅读下载全文

作  者:黄骏 朱强[1] HUANG Jun;ZHU Qiang(College of Intelligent Manufacturing,Wuhu Institute of Technology,Wuhu 241006,China)

机构地区:[1]芜湖职业技术学院智能制造学院,安徽芜湖241006

出  处:《辽东学院学报(自然科学版)》2023年第4期298-304,共7页Journal of Eastern Liaoning University:Natural Science Edition

基  金:安徽省高等学校科学研究重点项目(2022AH040298);安徽省高等学校省级质量工程课程思政示范课程(2021kcszsfkc452);芜湖职业技术学院校级教育教学改革一般项目(2021jyyb09);芜湖职业技术学院校级科研自然重点项目(wzyzrzd202203)。

摘  要:为提高多机器人协同作业效率,设计一种基于蚁群粒子群融合的多机器人协同路径规划算法。运用栅格法构建多机器人协同作业环境栅格模型,设定机器人约束条件;再运用粒子群算法预规划得出各机器人最优参考路径,使用蚁群算法将此类路径转化或信息素加强值,经蚁群算法的迭代运算后,获得各机器人全局最优避障路径;引入作业避碰规则,消除各个机器人全局最优避障路径中的机器人间碰撞路径,得到最终的多机器人协同路径。实验结果表明,所提算法最终规划得到的多机器人协同路径较理想,能够有效避开全部障碍物,并消除各机器人间的碰撞,整体规划耗时低于20 ms,时效性较高。In order to improve the efficiency of multi-robot cooperative operation,a multi-robot cooperative path planning algorithm based on ant colony particle swarm fusion was designed.The grid method was used to construct the grid model of multi-robot cooperative working environment,and the robot constraints were set.Then the particle swarm optimization algorithm was used to pre-plan the global optimal reference path of each robot,and the path was transformed into the pheromone enhancement value of the ant colony algorithm.After the iterative operation of the ant colony algorithm,the global optimal obstacle avoidance path of each robot was obtained.The operation collision avoidance rule was introduced to eliminate the collision path between robots in the global optimal obstacle avoidance path of each robot,and the final multi-robot cooperative path was obtained.The results show that the multi-robot cooperative path obtained by the proposed algorithm is ideal,which can effectively avoid all obstacles and eliminate collisions between robots.The overall planning time is less than 20 ms,and the timeliness is high.

关 键 词:蚁群算法 粒子群算法 多机器人协同 路径规划 栅格模型 避碰规则 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象