检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林晓浪 傅利斌 王欣[1] LIN Xiaoang;FU Libin;WANG Xin(School of Health Science and Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;Shanghai Hongkou District Market Supervision and Administration,Shanghai 200081,China)
机构地区:[1]上海理工大学健康科学与工程学院,上海200093 [2]上海市虹口区市场监督管理局,上海200081
出 处:《食品科学》2024年第10期19-27,共9页Food Science
基 金:“十四五”国家重点研发计划重点专项(2022YFF1101100)。
摘 要:油茶籽油商业价值高,有必要开发快速准确的油茶籽油掺伪鉴别方法。本实验研究低场核磁共振(low-field nuclear magnetic resonance,LF-NMR)弛豫特性结合支持向量机(support vector machine,SVM)鉴别油茶籽油掺伪的可行性。在比较了油茶籽油、3种其他种类的正常/氧化的食用油及多种二元掺兑油样的LF-NMR弛豫特性的基础上进行主成分分析,设计了具有二叉树结构的SVM多分类器,采用ReliefF算法进行特征筛选,建立并验证了油茶籽油掺伪的SVM鉴别模型。研究表明,油脂种类、氧化程度及掺兑比例均会影响油样的LF-NMR弛豫特性。当特征数为9时,SVM多分类模型性能最佳,准确率可达90.77%,对油茶籽油、掺兑类型及比例的平均召回率为90.87%、精确率为90.83%、F1分数为0.90。这表明基于LF-NMR弛豫特性的SVM模型可用于油茶籽油的掺伪鉴别。The high commercial value of camellia oil entails the development of a rapid and accurate method for identifying camellia oil adulteration.In this study,the feasibility of using low-field nuclear magnetic resonance(LF-NMR)relaxation characteristics and support vector machine(SVM)to detect adulteration in camellia oil was investigated.The LF-NMR relaxation characteristics of raw and oxidized oils of camellia and three other species and their binary blends were compared.Furthermore,principal component analysis was carried out and then an SVM multi-classifier with a binary tree structure was designed.After feature screening by the ReliefF algorithm,an SVM model for identifying adulteration in camellia oil was established and evaluated.The results showed that the LF-NMR relaxation characteristics of oil samples were affected by oil type,oxidation degree and blending ratio.The SVM multi-classification model with 9 features exhibited the best performance,with an accuracy of 90.77%.Additionally,the average recall,precision and F1 score for camellia oil,blending type and ratio were 90.87%,90.83%and 0.90,respectively.This study indicated that the SVM model based on LF-NMR relaxation characteristics could be employed for identifying adulteration in camellia oil.
关 键 词:油茶籽油 掺伪鉴别 低场核磁共振 支持向量机 主成分分析 RELIEFF算法
分 类 号:TS227[轻工技术与工程—粮食、油脂及植物蛋白工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.30.59