检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张明路[1] 王清 刘璇[1] 李满宏[1] Zhang Minglu;Wang Qing;Liu Xuan;Li Manhong(School of Mechanical Engineering,Hebei University of Technology,Tianjin 300130,China)
出 处:《天津大学学报(自然科学与工程技术版)》2024年第7期759-767,共9页Journal of Tianjin University:Science and Technology
基 金:国家重点研发计划资助项目(20022YFB4701102);国家自然科学基金资助项目(U1913211);河北省自然科学基金资助项目(F2021202062).
摘 要:针对机械臂刚柔耦合动力学模型拟合精度不高的问题,在分析动力学参数对各关节力矩影响的基础上,提出了一种基于神经网络力矩补偿的动力学参数辨识方法.首先,对动力学模型进行线性化分析,得到最小惯性参数集,设计机械臂激励轨迹,并采集各关节数据集.其次,搭建神经网络架构,对不同隐藏层数的神经网络模型的训练效果比较,证明了本文模型的准确性.将关节位置、速度、加速度数据集作为网络架构输入,经过神经网络学习后提取出各关节力矩.最后,对算法辨识出来的模型进行验证,以模型预测力矩的均方根误差为评判标准,关节拟合力矩结果表明,本文所用方法相较刚体逆动力学有更好的拟合精度,减少了关节摩擦等非线性因素对辨识实验的影响,得到更精准的动力学模型,对机械臂系统有更好的控制效果.To address the issue of low fitting accuracy of the rigid flexible coupling dynamic model of a mechanical arm,a dynamics parameter identification method based on neural network torque compensation was proposed by analyzing the effect of dynamic parameters on joint torque.First,the dynamical model was linearized,the minimum inertial parameter was established,the mechanical arm excitation trajectory was optimized,and data sets for each joint were collected.Second,a multilayer neural network architecture was built,and the training effects of the neural network models with different numbers of hidden layers were compared,confirming the accuracy of the proposed model.The joint position,velocity and acceleration data sets were used as the input of the network architecture,the torque was calculated after neural network.Finally,the identification model was verified.The root-mean-square error of the predicted moment was taken as the evaluation standard.The findings of joint fitting torque reveal that the proposed method has better fitting accuracy than inverse dynamics and control effect on the mechanical arm system.Fur-ther,the model reduces the impact of nonlinear factors,such as joint friction,on the identification experiments,obtains a more accurate dynamical model,and enhances precision in the manipulation of the robotic arm.
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.174.142