基于改进蚁群算法的复杂环境路径规划  

Complex Environment Path Planning Based on an Improved Ant Colony Algorithm

在线阅读下载全文

作  者:杨俊起[1,2] 刘飞洋 张宏伟[1,2] YANG Junqi;LIU Feiyang;ZHANG Hongwei(School of Electrical Engineering and Automation,Henan Key Laboratory of Intelligent Detection and Control of Coal Mine Equipment,Henan Polytechnic University,Jiaozuo 454003,China)

机构地区:[1]河南理工大学电气工程与自动化学院,河南焦作454003 [2]河南理工大学河南省煤矿装备智能检测与控制重点实验室,河南焦作454003

出  处:《复杂系统与复杂性科学》2024年第3期93-99,共7页Complex Systems and Complexity Science

基  金:国家自然科学基金(61973105);河南省高校基本科研业务费专项基金(NSFRF180335)。

摘  要:针对蚁群算法在复杂环境下难以收敛、最优值差的问题,提出了一种改进蚁群算法。引入修正策略,提出两种局部修正方法以减少无效路径。提出一种自适应信息素更新机制,将初始信息素与蚂蚁所释放的信息素区分挥发;针对每次迭代蚂蚁所释放的信息素,通过设计时变挥发因子的变化律单独挥发,得到自适应挥发强度的信息素挥发机制。最后,将算法应用到不同复杂环境,与已有改进蚁群算法对比分析,研究结果说明改进算法在有效时间、平均距离、最短距离的优越性。This paper proposes an improved ant colony algorithm to solve the problem of slow and poor convergence.First,a correction strategy is introduced,which includes two local correction methods to reduce invalid paths.Second,an adaptive pheromone updating mechanism is developed to distinguish and volatilize the initial pheromone from the pheromone released.For the pheromone released in each iteration,a change law of time-varying volatilization factor is designed to volatilize independently and obtain pheromone volatilization mechanism with adaptive volatilization intensity.Finally,the proposed algorithm is applied to mobile robot path planning.Compared with the existing improved ant colony algorithms,the results show that the improved algorithm is excellent in terms of effective time,average distance and shortest distance.

关 键 词:蚁群算法 改进蚁群算法 全局优化 路径规划 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TP29[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象