基于范数自适应步长RRT算法的机械臂路径规划  

Path Planning of Manipulators Based on the Norm Adaptive Step-size RRT Algorithm

在线阅读下载全文

作  者:刘亚飞 刘放[1] 董蓉 吴宝宁 聂少卿 Liu Yafei;Liu Fang;Dong Rong;Wu Baoning;Nie Shaoqing(School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China;Tangshan Institute,Southwest Jiaotong University,Tangshan 063000,China)

机构地区:[1]西南交通大学机械工程学院,四川成都610031 [2]西南交通大学唐山研究院,河北唐山063000

出  处:《机械传动》2024年第12期82-86,共5页Journal of Mechanical Transmission

摘  要:针对传统快速扩展随机树(Rapidly-Exploring Random Tree,RRT)算法在多维环境下固定步长调试耗时长、搜索效率低的问题,提出了一种适用于机械臂的范数自适应步长RRT算法。建立6自由度UR5机械臂的运动学模型并进行正运动学分析,得到其雅可比矩阵;结合范数不等式和雅可比矩阵,建立机械臂工作空间与关节空间的步长映射关系,在动态改变关节空间搜索步长的同时,保证碰撞检测的有效性。仿真分析结果表明,范数自适应步长RRT算法比传统固定步长RRT算法搜索效率高且无需手动调试步长,路径搜索时间缩短了29.32%,提高了机械臂路径规划的效率。A norm adaptive step size rapidly-exploring random tree(RRT)algorithm suitable for manipulators was proposed to address the issues of fixed step size debugging time,poor collision detection performance,and low search efficiency of the traditional RRT algorithm in multidimensional environments.Firstly,a kinematic model with a 6-degree-of-freedom UR5 manipulator was established,and the forward kinematic analysis was performed.Secondly,by combining the norm inequality and the Jacobian matrix,a step mapping relation between the workspace of the manipulator and the joint space was constructed,dynamically changing the search step size of the joint space while ensuring the effectiveness of collision detection.Finally,the simulation analysis results show that the norm adaptive step size RRT algorithm has higher search efficiency than the traditional fixed step size RRT algorithm and does not require the manual step size adjustment,and the path search time has been reduced by 29.32%,thus improving the efficiency of manipulator path planning.

关 键 词:路径规划 机械臂 快速扩展随机树 自适应步长 正运动学 

分 类 号:TP241[自动化与计算机技术—检测技术与自动化装置] TP18[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象