机构地区:[1]西南交通大学轨道交通运载系统全国重点实验室,四川成都610031
出 处:《交通运输工程学报》2025年第1期121-131,共11页Journal of Traffic and Transportation Engineering
基 金:国家自然科学基金项目(U2034210,52272406,52002344,52102441);四川省自然科学基金项目(2022NSFSC1887)。
摘 要:为保障高速动车组蛇行稳定性并提升临界速度,开展基于主动抗蛇行减振器的车辆系统分岔特性控制研究,建立了包含刚性转向架横移/摇头与车体横移的动力学简化模型,结合实测磨耗后期的车轮踏面数据给出了非线性轮轨关系;在传统被动悬挂的基础上并联主动抗蛇行减振器,基于转向架摇头控制分析了车辆系统的Hopf分岔及分岔后的复杂运动。分析结果表明:线性刚度与线性阻尼控制均能延后Hopf分岔点,即能够直接提高车辆系统的蛇行临界速度,从被动状态下247 km·h^(-1)提高至328 km·h^(-1);线性刚度控制不影响分岔后的轮对横移量,将蛇行频率从5 Hz提高至7 Hz,线性阻尼控制能有效降低分岔后的极限环幅值与蛇行频率;非线性刚度与阻尼控制不改变车辆的临界速度,且二次项控制增益将引起车辆系统产生不稳定的极限环;三次项控制增益均可以降低分岔后的极限环幅值,其中三次项刚度控制会提高蛇行频率,三次项阻尼控制能够抑制蛇行频率;传统被动悬挂下车辆在发生Hopf分岔后,系统将经历极限环运动进入倍周期分岔进而通向混沌态,而线性控制在车速为386 km·h^(-1)时发生超临界Hopf分岔后能维持稳定的极限环单周期运动,其最大李雅普诺夫指数始终小于0,可以有效避免车辆系统产生复杂的混沌运动,但非线性控制的作用效果有限。In order to ensure the hunting stability of high-speed trains and improve critical speed,a study on control of the bifurcation characteristics of vehicle system based on active yaw dampers was carried out.A simplified dynamics model containing the lateral/yaw motion of a rigid bogie and the lateral motion of the car body was established,and a nonlinear wheel-rail relationship was given by combining the measured wheel tread data at the end-worn stage.Active yaw dampers were connected in parallel on the basis of traditional passive suspension,and the Hopf bifurcation and complex motion of the vehicle system after bifurcation were analyzed based on the yaw motion control of bogie.Research results show that the Hopf bifurcation point can be delayed,and the critical speed of vehicle system can be directly increased from 247 km·h^(-1) in passive state to 328 km·h^(-1) through linear stiffness and damping control.The lateral wheelset displacement after bifurcation is not affected by linear stiffness control,increasing the hunting frequency from 5 Hz to 7 Hz,while the limit cycle amplitude and hunting frequency after bifurcation are effectively reduced via linear damping control.The critical speed is not changed by nonlinear stiffness and damping control,and quadratic control gain will cause the vehicle system to produce an unstable limit cycle.The amplitude of the limit cycle after bifurcation can be reduced through cubic control gain,of which the cubic stiffness control can increase the hunting frequency,while the cubic damping control can inhibit hunting frequency.Meanwhile,after Hopf bifurcation of the vehicle under traditional passive suspension,the system will go through the limit cycle motion into period doubling bifurcation and then lead to the chaotic state,whereas the linear control can maintain the stable single-cycle motion of the limit cycle after the supercritical Hopf bifurcation occurs at the speed of 386 km·h^(-1),and its maximum Lyapunov exponent is always less than 0,which can effectively avoid the
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...