检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张太忠[1]
机构地区:[1]南京师范大学数学与计算机科学学院
出 处:《南京大学学报(自然科学版)》2003年第1期55-61,共7页Journal of Nanjing University(Natural Science)
基 金:江苏省教育厅高校科研项目(00KJB110004;0lKJDll0002);南京气象学院校内科研基金(Y008;Y203)
摘 要:设f(z)和g(z)在复平面的一个区域G内亚纯,α∈C=C∪│∞│,若f(z)-α和g(z)-α在G内具有相同的零点,则α称为函数f(z)和g(z)在G内的分担值,当零点计重数或不计重数时,则α分别称为函数f(z)和g(z)在G内的CM分担值或IM分担值.研究在函数与其高阶导数具有分担值的条件下函数族的正规性定则,证明了一个区域G上的全纯函数族F是正规的,如果两个不同的有穷复数为族F中每个函数及其k阶导数在G中的CM分担值,且族F中每个函数的零点重级≥k(k为自然数).例子表明本文定理中对函数零点重级的限制至少在k=2时是精确的.Let f(z) and g (z) be meromorphic functions in a domain G of the fcomplex plane, α ∈ C = C ∪│∞│ . If /(z) - α and g(z) - α have same zeros in G,α is said to be a shared value in G of f(z) and g(z); when zeros are counted in multiplicities or not respectively, a is said to be a CM or IM shared value respectively.The first approach to normality of a family of meromorphic functions concerning shared values was done by [1]. He proved that a family of meromorphic functions in a domain G was a normal family, if three distinct finite complex numbers α1 ,α2,α3 were IM shared values in G of/and its derivative f' for each function f in the family.Recently, Chen and Hua[2], Xu[3,4] have studied this kind of problem, and have obtained many normality criteria of families of holomorphic functions under the condition that each function in families and its lower order derivatives (mainly one order derivative)share the same values.This paper studies the problem under the condition that each function in families and its higher order derivative share the same values, and shows that a family F of holomorphic functions in a domain G is a normal family, if f and its k-th order derivative f(k) share two distinct finite values CM in G for each function f in the family F and each function in F has only zeros of order≥k, where k is a positive integer.The counterexample shows that the constriction to the multiplicities of zeros of functions in our theorem is precise at least when k = 2.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222