《Journal of Computational Mathematics》

作品数:1641被引量:2624H指数:18
导出分析报告
《Journal of Computational Mathematics》
主办单位:中国科学院数学与系统科学研究院
最新期次:2025年3期更多>>
发文主题:CONVERGENCESOLVINGFINITE_ELEMENT_METHODFINITE_ELEMENTMETHOD更多>>
发文领域:理学自动化与计算机技术电子电信文化科学更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划中国博士后科学基金国家教育部博士点基金更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
NUMERICAL ENERGY DISSIPATION FOR TIME-FRACTIONAL PHASE-FIELD EQUATIONS
《Journal of Computational Mathematics》2025年第3期515-539,共25页Chaoyu Quan Tao Tang Jiang Yang 
supported by the NSFC/Hong Kong RGC Joint Research Scheme(Grant No.NSFC/RGC 11961160718);supported by the National Natural Science Foundation of China(NSFC)(Grant No.12271240);by the fund of the Guangdong Provincial Key Laboratory of Computational Science and Material Design,China(Grant No.2019B030301001);by the Shenzhen Natural Science Fund(Grant No.RCJC20210609103819018);supported by the NSFC(Grant No.12271241);by the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023B1515020030);by the Shenzhen Science and Technology Program(Grant Nos.RCYX2021060,9104358076).
The numerical integration of phase-field equations is a delicate task which needs to recover at the discrete level intrinsic properties of the solution such as energy dissipation and maximum principle.Although the the...
关键词:Time-fractional phased-field equation Allen-Cahn equations Cahn-Hilliard equations Caputo fractional derivative Energy dissipation 
PROXIMAL ADMM APPROACH FOR IMAGE RESTORATION WITH MIXED POISSON-GAUSSIAN NOISE
《Journal of Computational Mathematics》2025年第3期540-568,共29页Miao Chen Yuchao Tang Jie Zhang Tieyong Zeng 
supported by the National Natural Science Foundations of China(Grant Nos.12061045,12031003);by the Guangzhou Education Scientific Research Project 2024(Grant No.202315829);by the Guangzhou University Research Projects(Grant No.RC2023061);by the Jiangxi Provincial Natural Science Foundation(Grant No.20224ACB211004).
Image restoration based on total variation has been widely studied owing to its edgepreservation properties.In this study,we consider the total variation infimal convolution(TV-IC)image restoration model for eliminati...
关键词:Image restoration Mixed Poisson-Gaussian noise Alternating direction method of multipliers Total variation 
NUMERICAL METHODS FOR APPROXIMATING STOCHASTIC SEMILINEAR TIME-FRACTIONAL RAYLEIGH-STOKES EQUATIONS
《Journal of Computational Mathematics》2025年第3期569-587,共19页Mariam Al-Maskari 
This paper investigates a semilinear stochastic fractional Rayleigh-Stokes equation featuring a Riemann-Liouville fractional derivative of orderα∈(0,1)in time and a fractional time-integral noise.The study begins wi...
关键词:Riemann-Liouville fractional derivative Stochastic Rayleigh-Stokes equation Finite element method Convolution quadrature Error estimates 
CENTRAL LIMIT THEOREM FOR TEMPORAL AVERAGE OF BACKWARD EULER-MARUYAMA METHOD
《Journal of Computational Mathematics》2025年第3期588-614,共27页Diancong Jin 
supported by the National Natural Science Foundation of China(Grant Nos.12201228,12171047);by the Fundamental Research Funds for the Central Universities(Grant No.3004011142).
This work focuses on the temporal average of the backward Euler-Maruyama(BEM)method,which is used to approximate the ergodic limit of stochastic ordinary differential equations(SODEs).We give the central limit theorem...
关键词:Central limit theorem Temporal average ERGODICITY Backward Euler-Maruyama method 
A HIGH ORDER SCHEME FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH THE CAPUTO-HADAMARD DERIVATIVE
《Journal of Computational Mathematics》2025年第3期615-640,共26页Xingyang Ye Junying Cao Chuanju Xu 
supported by the Fujian Alliance of Mathematics(Grant No.2024SXLMMS03);by the Natural Science Foundation of Fujian Province of China(Grant No.2022J01338);supported by the NSFC(Grant Nos.12361083,62341115);by the Foundation of Guizhou Science and Technology Department(Grant No.QHKJC-ZK[2024]YB497);by the Natural Science Research Project of Department of Education of Guizhou Province(Grant No.QJJ2023012);by the Science Research Fund Support Project of the Guizhou Minzu University(Grant No.GZMUZK[2023]CXTD05);supported by the NSFC(Grant No.12371408).
In this paper,we consider numerical solutions of the fractional diffusion equation with theαorder time fractional derivative defined in the Caputo-Hadamard sense.A high order time-stepping scheme is constructed,analy...
关键词:Caputo-Hadamard derivative Fractional differential equations High order scheme Stability and convergence analysis 
CRANK-NICOLSON GALERKIN APPROXIMATIONS FOR LOGARITHMIC KLEIN-GORDON EQUATION
《Journal of Computational Mathematics》2025年第3期641-672,共32页Fang Chen Meng Li Yanmin Zhao 
supported by the China Postdoctoral Science Foundation(Grant No.2023T160589);by the Cultivation Foundation of Zhengzhou University(Grant No.JC23153003);by the National Natural Science Foundation of China(Grant Nos.11801527,11971416);by the Natural Science Foundation of Henan Province(Grant No.222300420256);by the Training Plan of Young Backbone Teachers in Colleges of Henan Province(Grant No.2020GGJS230);by the Program for Innovative Research Team(in Science and Technology)in University of Henan Province(Grant No.23IRTSTHN018);by the Academic Degrees&Graduate Education Reform Project of Henan Province(Grant No.2021SJGLX224Y).
This paper presents three regularized models for the logarithmic Klein-Gordon equation.By using a modified Crank-Nicolson method in time and the Galerkin finite element method(FEM)in space,a fully implicit energy-cons...
关键词:Logarithmic Klein-Gordon equation Finite element method CUT-OFF Error splitting technique CONVERGENCE 
AN ITERATIVE TWO-GRID METHOD FOR STRONGLY NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS
《Journal of Computational Mathematics》2025年第3期673-689,共17页Jiajun Zhan Lei Yang Xiaoqing Xing Liuqiang Zhong 
funded by the Science and Technology Development Fund,Macao SAR(Grant Nos.0070/2019/A2,0031/2022/A1);supported by the National Natural Science Foundation of China(Grant No.11901212);supported by the National Natural Science Foundation of China(Grant No.12071160).
We design and analyze an iterative two-grid algorithm for the finite element discretizations of strongly nonlinear elliptic boundary value problems in this paper.We propose an iterative two-grid algorithm,in which a n...
关键词:Iterative two-grid method CONVERGENCE Strongly nonlinear elliptic problems 
ERROR ANALYSIS OF FRACTIONAL COLLOCATION METHODS FOR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS WITH NONCOMPACT OPERATORS
《Journal of Computational Mathematics》2025年第3期690-707,共18页Zheng Ma Chengming Huang Anatoly A.Alikhanov 
supported by the National Natural Science Foundation of China(Grant No.12171177);supported by the Russian Science Foundation(Grant No.23-41-00037).
This paper is concerned with the numerical solution of Volterra integro-differential equations with noncompact operators.The focus is on the problems with weakly singular solutions.To handle the initial weak singulari...
关键词:Volterra integro-differential equation Noncompact operator Nonsmooth solution Collocation method Fractional polynomial hp-version error analysis 
A DECOUPLED,LINEARLY IMPLICIT AND UNCONDITIONALLY ENERGY STABLE SCHEME FOR THE COUPLED CAHN-HILLIARD SYSTEMS
《Journal of Computational Mathematics》2025年第3期708-730,共23页Dan Zhao Dongfang Li Yanbin Tang Jinming Wen 
supported by the National Natural Science Foundation of China(Grant Nos.12171442,12231003,12271215,12326378,11871248).
We present a decoupled,linearly implicit numerical scheme with energy stability and mass conservation for solving the coupled Cahn-Hilliard system.The time-discretization is done by leap-frog method with the scalar au...
关键词:Coupled Cahn-Hilliard system Leap-frog method Scalar auxiliary variable Error estimate 
ERROR ANALYSIS OF VIRTUAL ELEMENT METHODS FOR THE TIME-DEPENDENT POISSON-NERNST-PLANCK EQUATIONS
《Journal of Computational Mathematics》2025年第3期731-770,共40页Ying Yang Ya Liu Yang Liu Shi Shu 
supported by the China NSF(NSFC 12161026);by the Special Fund for Scientific and Technological Bases and Talents of Guangxi(Grant No.Guike AD23026048);by the Guangxi Natural Science Foundation,China(Grant No.2020GXNSFAA159098);supported by the China NSF(NSFC 12371373);supported by the GUET Excellent Graduate Thesis Program(Grant No.2020YJSPYA02).
We discuss and analyze the virtual element method on general polygonal meshes for the time-dependent Poisson-Nernst-Planck(PNP)equations,which are a nonlinear coupled system widely used in semiconductors and ion chann...
关键词:Virtual element method Error estimate Poisson-Nernst-Planck equations Polygonal meshes Energy projection Gummel iteration 
检索报告 对象比较 聚类工具 使用帮助 返回顶部