明平兵

作品数:3被引量:0H指数:0
导出分析报告
供职机构:中国科学院数学与系统科学研究院计算数学与科学工程计算研究所科学与工程计算国家重点实验室更多>>
发文主题:REISSNER-MINDLIN板VSPOINCARE不等式非协调元WEI更多>>
发文领域:理学更多>>
发文期刊:《科学中国人》《数学进展》更多>>
所获基金:国家重点基础研究发展计划国家自然科学基金更多>>
-

检索结果分析

署名顺序

  • 全部
  • 第一作者
结果分析中...
条 记 录,以下是1-3
视图:
排序:
一个应变梯度有限元的新基函数
《数学进展》2016年第6期955-960,共6页李鸿亮 明平兵 
partially supported by the National Natural Science Foundation of China for Distinguished Young Scholars(No.11425106);National Natural Science Foundation of China(No.91230203);the funds from Creative Research Groups of China(No.11021101);the support of CAS NCMIS
本文获得了魏悦广在[Eur.J.Mech.A Solids,2006,25:897-913]中提出的一种简单有效的应变梯度有限元的一组基函数.它与已有基函数等价,但形式更加简单.
关键词:应变梯度理论 有限元 基函数 
一维非局部准连续集方法的分析
《科学中国人》2010年第1期54-54,共1页明平兵 
利用准连续集方法(Quasi-continuum Method)分析-系列递增复杂性模型的精确性。结果表明.重影力(GhostForce)的存在可能导致巨大的错误。这也表明E.Lu和Yang提议的重影力消除策略导致单位精度的准连续集方法。
关键词:准连续 非局部 一维 精确性 复杂性 重影 
Reissner-Mindlin板的Weissman-Taylor有限元的误差分析
《中国科学(A辑)》2001年第2期136-145,共10页明平兵 石钟慈 
国家重点基础研究专项经费资助项目!(批准号 :G19990 32 8)
对Reissner_Mindlin板的Weissman_Taylor有限元逼近进行了误差分析 .得到了与板的厚度一致无关的旋度、挠度和剪切应力的最优误差估计 .揭示了Weissman_Taylor元与稳定化方法的关系 .提出了另外两种与Weissman_Taylor元类似的元 .
关键词:REISSNER-MINDLIN板 locking-free元 稳定化方法 Weissman-Taylor元 变分问题 有限元逼近 误差分析 
检索报告 对象比较 聚类工具 使用帮助 返回顶部