用参数法求一些特殊的线性代数方程组的数值解  被引量:2

PARAMETRIC METHODS FOR SOME SPECIAL SYSTEM OF LINEAR ALGEBRAIC EQUATIONS

在线阅读下载全文

作  者:刘长河[1] 刘世祥[1] 马龙友[1] 

机构地区:[1]北京建筑工程学院基础部,北京100044

出  处:《数值计算与计算机应用》2005年第1期44-53,共10页Journal on Numerical Methods and Computer Applications

摘  要:本文将求解线性方程组数值解的双参数法进行推广,得到(?)种求解一些特殊的线性方程组的较为(?)般的方法-参数法,并具体给出利用三组参数求解拟二对角方程组和拟Hessen-berg方程组的算法.此算法具有明显的优越性.比如,在求解拟二对角方程组时,和利用LU分解法相比,乘除运算的次数由11n-16变为9n+20,所需要设定的向量组由5个降为4个.在求解拟Hessenberg方程组时,和Gauss消去法相比,除法运算的次数由1/2n(n+1)变为3n-4.这对求解大型的拟三对角方程组和拟Hessenberg方程组非常有利.当然,此种方法还可以用来求解其它一些方程组。In this paper, biparametric methods for system of linear algebraic equations are popularized and more commonly methods, parametric methods, are derived for some special system of linoar equations. Meanwhile, the concrete algorithms, which are used to solve systems of quasi-tridiagonal equations and quasi-Hesscnberg equations are suggested. These methods have many advantages. For example, when they are used to solve system of quasi-tridiagonal equations, the number of multiplication and division operation changes form 11n - 16 to 9n + 20 comparing with LU decomposition method. Moreover, the number of vectors need to be set in program is reduced from 5 to 4. When they are used to solve system of quasi-tridiagonal equations, the number of division operation is reduced form 1/2n (n + 1) to 3n - 1 comparing with the Gaussian elimination. The methods in this paper are beneficial to solve large scale systems of quasi-tridiagonal equations and quasi-Hessenberg equations. Of course, these methods can also be used to solve other systems of linear equations.

关 键 词:拟三对角方程组 求解 线性方程组 数值解 线性代数方程组 向量组 次数 参数法 乘除运算 解法 

分 类 号:O241.6[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象