检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《绍兴文理学院学报(自然科学版)》2005年第7期22-25,共4页Journal of Shaoxing College of Arts and Sciences
摘 要:与微分算子及其逆算子积分算子作比较,讨论了差分算子及其逆算子(和分).主要结果为关于乘积的k-阶差分的Leibniz公式(定理6.3)以及乘积的k-阶和分的对偶公式(定理6.4)。显然,差分算子及其逆算子是阶乘幂多项式的方便工具。In comparison with the differential operator and its inverse - integral operator, the difference operator and its inverse (sum operator) are discussed in this paper. The main results are the Leibniz' formula of difference of k - order of product( Th. 6.3 ) and its dual form - the formula of sum of k - order of product ( Th . 6.4) . Clearly, the difference operator or sum operator is the convenient tool for the polynomial of factorial powers.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.176.192