集值随机过程的Newton-Leibniz公式  

Newton-Leibniz formula of set-valued stochastic processes

在线阅读下载全文

作  者:刘常昱[1] 李世楷[1] 周华任[1] 

机构地区:[1]解放军理工大学理学院

出  处:《解放军理工大学学报(自然科学版)》2005年第2期197-200,共4页Journal of PLA University of Science and Technology(Natural Science Edition)

摘  要:为了研究集值随机过程的微积分理论,首先介绍了有界闭凸集值随机过程强(弱)均方积分、强(弱)均方导数的定义,然后利用支撑函数与Hausdorff度量的性质,讨论了均方可导与均方可积之间的关系;以此为基础,分别证明了集值随机过程强、弱均方积分的Newton- Leibniz公式。最后给出了集值随机过程Newton- Leibniz公式的应用实例。In order to study the derivative and integral theories of the set-valued stochastic processes, an introduction is firstly made of the concepts of the strong (weak) mean square integral and derivative of the bounded closed convex set-valued stochastic processes. Then the relations between the mean square derivative and the mean square integral were discussed by means of support functions and Hausdorff measure. Based on them, the Newton-Leibniz formulas of the mean square integral of the bounded closed convex set-valued stochastic processes were proved. Fimally an example was presented. The conclusions are important to the further studying of the set-valued stochastic derivative equations.

关 键 词:NEWTON-LEIBNIZ公式 HAUSDORFF度量 有界闭凸集值随机过程 随机微分方程 微积分理论 支撑函数 应用实例 理论基础 导数 可积 可导 

分 类 号:O172.2[理学—数学] O189.11[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象