检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]解放军理工大学理学院
出 处:《解放军理工大学学报(自然科学版)》2005年第2期197-200,共4页Journal of PLA University of Science and Technology(Natural Science Edition)
摘 要:为了研究集值随机过程的微积分理论,首先介绍了有界闭凸集值随机过程强(弱)均方积分、强(弱)均方导数的定义,然后利用支撑函数与Hausdorff度量的性质,讨论了均方可导与均方可积之间的关系;以此为基础,分别证明了集值随机过程强、弱均方积分的Newton- Leibniz公式。最后给出了集值随机过程Newton- Leibniz公式的应用实例。In order to study the derivative and integral theories of the set-valued stochastic processes, an introduction is firstly made of the concepts of the strong (weak) mean square integral and derivative of the bounded closed convex set-valued stochastic processes. Then the relations between the mean square derivative and the mean square integral were discussed by means of support functions and Hausdorff measure. Based on them, the Newton-Leibniz formulas of the mean square integral of the bounded closed convex set-valued stochastic processes were proved. Fimally an example was presented. The conclusions are important to the further studying of the set-valued stochastic derivative equations.
关 键 词:NEWTON-LEIBNIZ公式 HAUSDORFF度量 有界闭凸集值随机过程 随机微分方程 微积分理论 支撑函数 应用实例 理论基础 导数 可积 可导
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7