检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南理工大学
出 处:《华南金融电脑》2005年第8期79-81,共3页Financial Computer of Huanan
摘 要:支持向量机(SVM)是在统计学习理论(SLT)的基础上发展起来的一种新的机器学习方法,它基于结构风险最小化原则,能有效地解决过学习问题,具有良好的推广性能和较好的分类精确性。本文采用SVM方法进行人脸识别研究,将人脸识别这一典型的多分类问题构造成适合SVM处理的二分类问题,克服了传统SVM方法在解决多分类问题上的一些缺陷。
关 键 词:人脸识别 统计学习理论 支持向量机 结构风险最小化原则 支持向量机(SVM) 人脸识别算法 分类问题 机器学习方法 学习问题 推广性能
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117

