非线性双曲型守恒律的高精度MmB差分格式  被引量:2

A high order accurate MmB difference scheme for nonlinear hyperbolic conservation laws

在线阅读下载全文

作  者:郑华盛[1] 赵宁[1] 

机构地区:[1]南京航空航天大学空气动力学系

出  处:《计算力学学报》2006年第2期218-222,共5页Chinese Journal of Computational Mechanics

基  金:航空科学基金(01A5200302A52004);国防预研资助项目

摘  要:构造了一维非线性双曲型守恒律方程的一个高精度、高分辨率的广义G odunov型差分格式。其构造思想是:首先将计算区间划分为若干个互不相交的小区间,再根据精度要求等分小区间,通过各细小区间上的单元平均状态变量,重构各等分小区间交界面上的状态变量,并加以校正;其次,利用近似R iem ann解算子求解细小区间交界面上的数值通量,并结合高阶R unge-K u tta TVD方法进行时间离散,得到了高精度的全离散方法。证明了该格式的Mm B特性。然后,将格式推广到一、二维双曲型守恒方程组情形。最后给出了一、二维Eu ler方程组的几个典型的数值算例,验证了格式的高效性。In this paper, a high-order accuracy, high resolution, generalized Godunov-type difference scheme is presented for 1D/2D nonlinear hyperbolic conservation laws. Firstly, the computational interval is divided into pieces of non-overlapping sub-intervals, and then each sub-interval is further subdivided into equal small-intervals according to required accuracy . Cell averaged-solutions from these small-intervals are used to reconstruct a high order polynomial approximation in small-interval boundaries. Furthermore the correction is introduced to prevent oscillations near discontinuities from the high-order approximation. Secondly, the approximate Riemann solver is used to compute numerical fluxs at small-intervals boundaries, and a high-order fully discretization method is obtained by applying high-order Runge-Kutta TVD time discretization . Moreover , we prove the MmB property of the scheme under a certain CFL condition , and extend to 1D/2D system of hyperbolic conservation laws. It does not necessitate the conventional field-by-field characteristic decomposition. Finally, several typical numerical experiments are given. The numerical results verify high resolution of the method.

关 键 词:双曲型守恒律 高阶精度 MMB差分格式 EULER方程组 

分 类 号:O241.8[理学—计算数学] O35[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象