一种机动目标的跟踪算法研究  被引量:12

Research on Maneuvering Target Tracking Algorithm Based on PF-RBF-Neural-Networks

在线阅读下载全文

作  者:桑成伟[1] 徐毓[1] 张楠[1] 张萍[1] 

机构地区:[1]空军雷达学院指挥自动化工程系,湖北武汉430019

出  处:《计算机测量与控制》2006年第10期1398-1400,共3页Computer Measurement &Control

基  金:国防预研基金项目(51421040103JB4902)

摘  要:目前在机动目标跟踪领域中讨论比较多的算法包括扩展卡尔曼滤波算法、强跟踪算法、UKF算法和粒子滤波算法;扩展卡尔曼滤波算法对非线性方程进行一阶线性阶处理,这种近似所带来的误差会随着非线性化程度的严重而越来越显著,最终造成滤波器的发散;而粒子滤波作为一种基于蒙特卡洛方法的贝叶斯滤波算法,虽然不需要对非线性方程进行一阶近似,但是其计算负担过于繁重,很难满足实时性的要求,提出了一种基于粒子滤波(PF)的径向基(RBF)神经网络(PF-RBF-Neural-Networks)机动目标跟踪算法,该算法能够获得和粒子滤波几乎相同的跟踪精度,同时又克服了粒子滤波计算量大的缺陷,仿真结果验证了该算法的有效性和可行性。At present, a lot of non-linear filter algorithms were introduced into solving maneuvering target tracking issue, which ineluded extended kalman filter (EKF), strong tracking filter (STF), unscented kalman filter (UKF) and particle filter (PF). EKF algorithm dealt non--linear equation with the first step of Taylor series, such approximate error would be more and more remarkable as non-- linear degree serious, the filter would take on dispersed state finally. PF algorithm is a kind of Bayes filter based on Monte Carlo method, which is no need of approximate disposal with non-linear equation, but the heavy burden of calculating is more serious that is difficult to meet the request for real time character. A maneuvering target tracking algorithm is introduced based on PF--RBF--Neural--Networks, which can get the tracking accuracy nearly the same as PF algorithm, and overcome the defect of PF algorithm at the same time. The simulation experiment shows its validity and feasibility.

关 键 词:非线性滤波 粒子滤波 RBF神经网络 机动目标 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象