检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张艳燕[1]
出 处:《工程数学学报》2009年第4期753-756,共4页Chinese Journal of Engineering Mathematics
摘 要:本文给出了求矩阵方程AXB=C的双对称最小二乘解的一种迭代解法。即利用法方程变换,将求最小二乘解转化为相容矩阵方程的求解问题,则对任意给定的初始双对称矩阵,利用迭代法通过有限步求出新方程的双对称解即可。并将求最佳逼近的问题转化为求一个新方程的极小范数解的问题,同样可用迭代法求解。In this paper an iterative method is presented to find the bisymmetric least-squares solutions of the matrix equation AXB = C. By applying the orthogonal method to the matrix equation, we can convert the problem of finding the least-squares solutions to another problem of solving a consistent matrix equation. Then as for an arbitrary initializing bisymmetric matrix, we just need to get the bisymmetric solutions of the new equation in finite steps by applying the iterative method. We also can convert the optimal approximated problem to another problem that is to find the least-norm solutions of a new matrix equation, and the problem can also be solved by applying the iterative method.
关 键 词:迭代法 FROBENIUS范数 最小二乘解 最佳逼近解 极小范数解
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.130.38