检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《高等学校计算数学学报》2009年第3期215-220,共6页Numerical Mathematics A Journal of Chinese Universities
基 金:四川省应用基础研究项目(2008JY0052);电子科技大学"中青年学术带头人+创新团队"基金资助
摘 要:1引言 三对角矩阵出现在很多应用中,例如,在求解常系数微分方程的比值问题,三次样条插值等应用中都会遇到三对角矩阵.因此这类矩阵非常重要,而且也有很多学者致力于这类矩阵的研究.在一些应用中,比如估计条件数和构造稀疏近似逆预条件子,需要计算三对角矩阵的逆,或者估计其逆元素的界.文献【1—7】给出了关于三对角矩阵逆的一些很好的结果,但是,这些结果大都建立在矩阵对角占优的条件之下,这限制了他们的应用.在本文中,我们给出一种一般三对角矩阵逆元素的估计办法.In this paper, a new estimate for the inverse of a general nonsingular tridiagonal matrix is presented. The given results need not the matrix satisfies the condition of diagonal dominance, which is needed by Nabben [Linear Algebra Appl., 1999, 287: 289-305] etc.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3